’,/ International Research Journal of Engineering and Technology (IRJET)

JET Volume: 08 Issue: 12 | Dec 2021

www.irjet.net

e-ISSN: 2395-0056
p-ISSN: 2395-0072

An object-Oriented Approach towards Building WhatsApp Inspired
Platform-Independent Chat Application (WOJ]) through Java without
using Database Management System

Vineesh Cuttingl, Syed Aeliya Mahdi Taqvi?

1Assistant Professor, Department of Computer Science & IT, SHUATS, India.
2Developer, Amiti Software Technology Pvt. Ltd,, India.

Abstract - Chat application is a program that utilizes
internet to communicate directly among other internet
users who are online or who are using the internet. It allow
users to communicate over great distance. Therefore, chat
application needs to be real-time and platform-independent
to be used by many users. The development of proposed chat
application (WO]) begins with the collection of relevant
data. All the modules of application are defined using Java
following pure object-oriented concepts thereby making it
highly independent of other technologies. Serialization has
been used to save the state of objects. WOJ] provides very
neat and clean chatting interface through which one
client/user can interact with others in a very simple way
with very less complexity. WOJ supports file sharing (for:
Jjpeg, png, mp4, pdf, etc), which makes this application very
handy for sharing multi-media content while chatting.

Key Words: WO], Object-Oriented Programming, Java,
Chat Application, Client-Server, No-Database, Serialisation.

1. INTRODUCTION

Communication is a means for people to exchange
information. It has started since the beginning of human
creation. Interestingly enough, telephonic communications
stand out as the fastest growing technology, from fixed
line to wireless mobile, from voice call to data driven
digital calls.

The emergence of digital computer network and
telecommunication technologies bears the same objective
that is to allow people to communicate. All this while,
much effort has been drawn towards consolidating the
devices into one and therefore combining the services.
Today digital chatting is one of the best ways to bring
people and ideas together despite geographical barriers.

There are lot of chat applications present in the digital
marketplace, but it takes lot of storage for installation and
memory space to run. Moreover, chat applications are very
complicated, because of which non-technical users find it
difficult to use.

The proposed chat application (WOJ) is implemented
with custom-communication mechanism for interaction
between chat-client and chat-server, intended to be

lightweight, with easy-to-use GUI interface, so the user
with less technical knowledge can also use it.

Any device with java virtual machine (JVM) gets to
register as a client and start communication instantly.
Chat-client application should be present on user’s device
to contact server application over internet to enable chat
with other registered users.

The Object Oriented (0OO) pattern makes sure that
every module and class is analysed, tested, and updated
separately.

2. METHODOLOGY

Since the invention of the computer, many approaches
of program development have evolved. Due to the
popularity of C language, structured programming became
very popular and was the main technique of the 1980s.
Later this technique failed to show the desired
performance in terms of maintainability, reusability and
reliability. As a result of this realization, a new
methodology known as Object-Oriented programming
emerged.[1]

2.1 Programming Language Paradigm

Language Paradigms

e

Imperative Declarative
Paradigm Paradigm
Procedural Object Functional Logical
Oriented
C. Pascal C++. Simula, Java Lisp Prolog

Fig -1: Language Paradigm

1. Imperative: programmer instructs the machine how
to change its state.[2]

© 2021,IRJET | ImpactFactor value: 7.529

ISO 9001:2008 Certified Journal | Pagel1716

’,/ International Research Journal of Engineering and Technology (IRJET)

JET Volume: 08 Issue: 12 | Dec 2021

www.irjet.net

e-ISSN: 2395-0056
p-ISSN: 2395-0072

a. Procedural - groups instructions into procedures.

b. Object-Oriented - groups instructions with the part
of the state they operate on.[2]

2. Declarative: programmer merely declares properties
of the desired result, but not how to compute it.

a. Functional - the desired result is declared as the
value of a series of function applications.

c

Logic - which the desired result is declared as the
answer to a question about a system of facts and
rules.[2]

Error free code with proper control can be achieved
over each function making the development process fast
and efficient yet Data were given lower priority while the
emphasis was on “doing things” in Structured
Programming. Unfortunately, functions and data structures
failed to model the real world very well [1].

2.2 Object-Oriented Programming

The approach emphasis on writing programs having
modules that can relate to real-world entity based upon
how people perceive the world. The program is organized
around the data being operated upon rather than the
operations performed [1]. The data is combined with the
set of functions that operate on the data to form a single
unit called “object”. With large number of cooperating
objects, a work network can be formed to achieve the
defined task. The definition of the object (data and
functions) is specified in class according to which the
object is formed.

Data is a main element in the development and is local
to an object. From outside the object the data cannot be
accessed directly as it remains encapsulated within an
object.

Object A Object B

N

Functions

A

Functions
=

Object C

4

N

Fig -2: Object Oriented Approach

Features of Object-Oriented Programming:

1. Abstraction: represents only the relevant data and
hides irrelevant data i.e. specifies necessary and
sufficient descriptions rather than implementation
details. It results in separation of interface and
implementation [3].

2. Encapsulation: keeps both data and functions safe
from outside interference and misuse. The advantage
of encapsulated code is that user knows how to access
it, there is no need of implementation details [4].

3. Inheritance: allows the extension and reuse of existing
code, without having to repeat or rewrite the code
from scratch. Inheritance involves the transfer of the
parent’s attribute to the children [3].

4. Polymorphism: the ability of an object to take on many
forms. The most common use of polymorphism in OOP
occurs when a parent class reference is used to refer to
a child class object [5].

5. Concurrency: multi-threading a way to achieve
concurrency in OOP like Java. A process can be divided
into multiple threads that can run concurrently and
each part can handle a different task at the same time,
consuming available hardware resources efficiently
specially when computer has multiple cores [6].

6. Event Handling: technique to handle an event
(interrupt), monitor the event and along with code for
what action to be performed if the event occurs. Since,
objects are connected to one another therefore can
pass the information and control in any defined order
to another object, making handling easy.

7. Object Cloning: to create exact copy of an object by
replicating all data functions to the cloned object
thereby saves the extra processing task for creating the
exact copy of an object [9]. Can be achieved by using
method defined within object class.

3.WOJ

The chat mechanism implemented requires the
constant interaction between a chat server and a chat client
from the initial phase of user registration to sending text,
data, etc. therefore the complete development is done in
two parts: 1. Server Application development 2. Client
Application development.

The java.net package in the Java platform provides a
class, Socket, that implements one side of a two-way
connection between one Java program and another
program present on the network. The Socket class sits on
top of a platform-dependent implementation, hiding the
details of any particular system from your Java program

© 2021,IRJET | ImpactFactor value: 7.529

IS0 9001:2008 Certified Journal | Page1717

’b International Research Journal of Engineering and Technology (IRJET)
IRJET Volume: 08 Issue: 12 | Dec 2021

www.irjet.net

e-ISSN: 2395-0056
p-ISSN: 2395-0072

[7]. The Socket is used to create connection between chat

3.1 Server-Side

server and chat client.

Start GUI
starts add MainFrame
StartServerApp create server end GUI
requests
ServerSocket | ServerUser |
-Accept ClientSocket -Stores user info
-Handle active clients -Keep user record
RequesiTypeSelector Mapper |
-Check type of -Stores active user
reuest from client address
-respond to request -Encryption
MessageQueue |
-Stores messages
-Create queue for
user message
SerializeDeSerialize
-Serialize object to stream
-Deserialize object from
stream
Fig -3: Server End Package
© 2021, IRJET | ImpactFactorvalue:7.529 | 1S09001:2008 Certified Journal | Page1718

"/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
IRJET Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

StartServerApp

main(String[] args): void

ServerUserFunction ServerSocket MessageQueueFunctions
addUser(): void setUpSocket(): void addMessage(): void
removeUser(): void startincomingThread(): void pullMessageChat(): void

AV4 AV4 AV4
ServerUser TypeSelector MessageQueue
setUserName(): void typeSelector(): void addToQueue(): void
getUserName(): void getMessageQueue(): void

ClientSocketMapper

addSocketToMapper: void
getSpecificSocket():void

A AN
T T
I % I
I I
I I
| I
I I
I I
I I
| I
I I
[

SerializeDe Serialize

serializeObject(): void
deSerializeObject(): void

Fig -4: Server End Class Diagram

3.1.1 ServerSocket
ChatServerSocket

This package contains server socket through which csm: ClientSocketiapper
inputArray: AmaylList==

client can 1n.teract with server and this is where al! the requestArray: ArayList<>
request of client gets processed and data of all the clients outputArray: ArrayList<=
are stored at server. All the functionalities to give response setlUpNetworking(): void
to requests are defined in this package. setUpServiceStatus: void

getMessageFromQueue(Siring, Object): void
sendMessageToClient(Siring, ArrayList): void
sendAboutToClient(String, String, String): void
sendProfilePicture ToClient(String, Object, String): void
sendOnlineStatusToClient(String, String, String): void

Fig -5: ChatServerSocket Class Diagram
3.1.2 MessageQueue

In this package all the messages and files (which are
sent while chatting through socket) are stored in queue

© 2021,IRJET | ImpactFactorvalue:7.529 | 1S09001:2008 Certified Journal | Page1719

‘b International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
IRJET Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

data structure and functionality class contains all the functions to fetch messages from message queue.

MeszageQueueFunctions

suf ServerlserFunctions
csm: ClientSocketMapper
msglist: HashMap=Siring, MessageQueue=
sds: SerializeDeSenalize

MessageQueue
queus: Queus=ArrayList=
addMessageToQueus(ArrayList): void checkQueueSize(): void
pullMessageFromQueus(): void clearQueue(): void

printAlltessage(): vo.id , printAllMessages(): void
geiCompleteQueue(): Queue=AmrayList= pullMessage(String): Queue<ArrayList=

updateMsgList(): void

addMessage(String, String, ArrayList): void
addNewQueue(String):void

N

Fig -6: MessageQueue and MessageQueueFunctions Class Diagram

3.2 Client-Side

2iqgnguasads

U0 sabessaw nd-
3j00ng 3j2an pue 3

[8ued UOesIBAU0Y
1242 woy sbessaw yjs4-

N9 0} Sjey peot
uogeajeuasaq jey)- [€—
sey)
ddviuaiouels
ves

3)00nq sjs8nbal

IN9 0} $}deju0J peoj-

N9

UoQe(euasaq ejued
Spej0)
Spels

alweJ{ureyy ppe

weajs

woy Paloo szeussag-

INO pus Wa ajesn

SlSSanJ‘J/

32BURSHQRRUAS

weays 0} 128igo s2yeuss-

OJu1 J3SN SAI0]S
T)

PI093) Jasn dasy-
J3sN SEAUBNY-

UoQIBUU0Y

J3NBSUSI USIE)ST
jeposiust)

safessaw
jind pue ysnd-

abessaw
10 8dA) y084D-

{ind pue ysnd-
U0gIBLL0d

sabessow
JANBS-UBIN USIgelST-

| Jopapgatessay

0} abessaw ysnd-

(=]
2
2
[=]
&
&
=
&
8
2
&
®

8|l 1eyd sjeudoidde

abessaw

Fig -7: Client End Package

© 2021,IRJET | ImpactFactorvalue:7.529 | 1S09001:2008 Certified Journal | Page 1720

‘,/ International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056

JET Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072
=&
22| [g
e > 25| |E
' @ @® -
' =5 & o
' g8 3
1 a2
H 2
i g
: E |e L3 -
' 8 g 33 o
; g g 32 g
| | [g
e - =& |2
' & -]
' b a8
' - @)
| @ 88 @ o
g : g g g] g .;: &
Bl il (8 = |8 = x = |&
Fr-+ | 2| [BEp—— 21| (B 5[o 2
g ' = B ----> Sa &
i ' F-3 ' B s
- - -2 27| |8
- g
: gl |F
1 o g ® ag
i Ela— 3| |f 5
' 3 Tl |lg— £&| [B
- = 28| |2 3
! T P -3 @
' T = L a8 2
! : 28| (g i% 2
o ! g2 fla 38
=1 % 5
Fig -8: Client End Class Diagram
321 User ChatFunction
sds: SerializeDeSerialize
In this package all the records of registered users are chatlist HashSel=ChalDetails=
. . . fps addChat(String,String, String, Byte[]): void
maintained and all the functionalities to fetch, update, and remove(): void
s d removeallChat{): void
delete user details are defined. bndatechatL et void
sortChatList(): void
ChatDetal getProfilePicture(String, byte[]): void
ClientUserFunction atletalls updateProfilePicture(String, Byte[]): void
sds: SerializeDeSerialize number. _String updateAbo_ut[string‘_Stringj:: void
userList: HashSet=ClientUserDetails= chat. String checkDuplicacy(String). Boolean
addUser(String,String, String, String Eytell): void time: String updateChat(Strng, String): void
removeUser(String): void ?DUUL String
getAllUser(): HashSet=ClieniUserDetails> image: byte(]

ClientUserDetails

number. String
name: String
about: String
image: byte]]

updatelser(): void
updateAbout(String,String): void
updateProfilePicture(String, Byte[]): void

setMumber{String): void
setName{String): void
setAbout(string): void
setimage(Byte[]): void
getNumber(): String
getName(): String
getAbout(). String
getlmage(): byte[]

checkDuplicacy(String): Boolean

Fig -9: ClientUserDetails and ClientUserFunction Class

3.2.2 Chats

Diagram

In this package all chats messages and information of
chat user is maintained and functionalities to fetch,
update, and delete chat is defined.

setNumber{String): void
setChat(String). void
setTime(Siring): void
setAbout(string): void
setimage(Byte[]): void
getMumber(): String
getChat(): String
getTime(): String
getAbout(): String
getimage(): byte[]

Fig -10: ChatDetails and ChatFunction Class Diagram

3.2.3 Contacts

In this package all the contact details are maintained.
And functionalities to fetch, update, and delete contacts

are defined.

© 2021, IRJET

Impact Factor value: 7.529

IS0 9001:2008 Certified Journal |

Page 1721

‘,/ International Research Journal of Engineering and Technology (IRJET)

JET Volume: 08 Issue: 12 | Dec 2021

www.irjet.net

e-ISSN: 2395-0056
p-ISSN: 2395-0072

ContactFunction

sds: SerializeDeSerialize
contactList: ArrayList<ContactDetails>

addContact{String, Siring, String, Byte[]): void
deleteContact(String): void
updateContactlis(): void

sortContactList(): void
updateProfilePicture(String, Byte[]): void
getProfilePicture(String, Byte[]): Byte[]
updateAbout(String, String): void
checkDuplicacy(String): Boolean
getAllContacts(): ArrayList==

ContactDetails

name: String

number: String
about: String

image: byte]]
setMame{String): void
setMumber(String): void
setAbout(string): void
setlmage(Byte(]): void
getNumber(): String
getName(): String
getNumber(): String
getAbout(): String
getimage(): byte[]

Fig -11: ContactDetails and ContactFunction Class
Diagram

3.2.4 MessageQueue

In this package user messages are stored in Queue data
structure. And functionalities to fetch and remove
messages are defined.

MessageQueueFunctions
suf: ServerUserFunctions
csm: ClientSocketMapper
msgList: HashMap=<3tring, MessageQueue>
sds: SerializeDeSerialize

addMessage(String, String, ArrayList): void
addNewQueue(String):void
checkQueueSize(): void

clearQueue(): void

printAllMessages(): void
pullMessage(Siring): Queus=ArrayList=
updateMsgList(). void

MessageQueue
queus: Queue=ArraylList>
addMessageToQueue(ArrayList): void
pullMessageFromQueue(): void
printAliMessage): void
getCompleteQueus(): Queue=ArrayList=

Fig -12: MessageQueue and MessageQueueFunction Class
Diagram

3.2.5 ClientSocket

This package contains the client end socket through
which client can interact with server. Functions for
different kind of requests are defined such as: Registering
client on server, uploading profile picture on server, and
message fetching request.

ClientToServer

number; Siring

magf. MessageQueueFunction

bos: BufferedOuiputSiream

oos: ObjectOutputStream

inputArray: ArrayList

setUpNetworking(): void

setActiveUser(String): void
registerOnServer(String, String, String, String): void
socketRegistrationRequest(): void
messageClieniToServer(String, Object, String, String): void
requestMessageFromServer(): void
updateProfilePicture(String, Byte[]): void
requestProfilePicture(String): void
updateAbout({String, String). void

requestAbout(): void

checkOnlineStatus(): void

Fig -13: ClientToServer Class Diagram
3.3 Custom Request/Response Message

The communication between Server and Client
application is maintained by passing custom ArrayList
containing information of sender, receiver, message,
message type, etc. in a custom defined sequence which
then converted to Byte Array in order to be sent over the

network.
0 |NUMBER NAME. ABOUT

Here, zero (0) means the message sent from client to
server is a request for new user registration, therefore,
proper method defined to handle registration task will be
executed accepting Number, Name, Email, About as

arguments.

After successful registration, based upon message type
(1), the server will register the socket object of the client, in
order to provide service to the client.

2 | SENDER [DESTINATION | MESSAGE | DATE |FLE NAMEﬁ

Depending upon the message type (2), the file with its
name, extension, date along with the destination
information is sent to server from client.

3.1| ACTIVE NUMBER

MESSAGE FRAME

The other clients on getting online, generate the request
to server for chat/conversation data via message type (3).
In response, the server replies with message type (3.1)

© 2021,IRJET | ImpactFactor value: 7.529

IS0 9001:2008 Certified Journal | Page 1722

‘,/ International Research Journal of Engineering and Technology (IRJET)

JET Volume: 08 Issue: 12 | Dec 2021

www.irjet.net

e-ISSN: 2395-0056
p-ISSN: 2395-0072

containing the chat data which is processed at client

application.

Profile picture can be updated via message type (4),
while the image file is sent in the form of Byte Array.

5 | ACTIVE NUMBER -

The request for profile picture is made with message
type (5) from client to server. In response, the server sends
back the image file in form of Byte Array in message type
(5.1) which is processed at client application.

6 | ACTIVENUMBER | ABOUT

Message type (6), sent from client to server to update
“About” section information.

7 | ACTIVE NUMBER | CONTACT NUMBER

7.1 |USER NUMBER| ABOUT

Message type (7), sent from client to server to request
“About” section information for a particular client using
contact information. In response, server sends message
type (7.1), containing “About” information to client.

8 | ACTIVE NUMBER | CONTACT NUMBER

8.1 ONLINE STATUS

Message type (8), to request online status from server.
In response, server replies with message type (8.1),
containing online status as Boolean data.

4. Result

The complete implementation of “W0J” done using Java
as a language of choice. None of the primitive data types
used so as to keep the program completely object oriented.
Alternatively, Wrapper classes (Byte, Integer, etc.) used. No
DBMS used, the generated data is handled completely using
custom algorithms, user defined methods along with built-
in methods that comes with standard JDK installer. System
Configuration used for development: Intel® Core™ i7-
4700MQ CPU @ 2.40GHz, 8GB RAM, 240 GB SSD, Windows

10 64-bit,]DK 14.2, Eclipse IDE. Configuration used for
execution of Server-Application: Intel® Core™ i7-6700MQ
CPU @ 3.40GHz, 8GB RAM, 1TB HDD, Windows 10 64-bit,
JVM 15, 100 Mbps connection speed between the network
and the computer. Configuration used for execution of
Client-Application(s): Intel® Core™ i7-6700MQ CPU @
3.40GHz, 8GB RAM, 1TB HDD, Windows 10 64-bit, JVM 15,
100 Mbps connection speed between the network and the
computer.

 Wo)
Verify your identity

WOJ

User Verification

Enter registered mobile number

— B2

Fig -14: Login Screen

Enter mobile number on login screen, if registered chat
panel will appear else click on new user button in the
bottom.

 wo)

Registration

woJ

New User Registration

Name Mark Zuckerberg
Mobile 9454
E-mail mark@anymail.com

Hey There! | am using
About WhatsAppOnJava
Regls!er

Fig -15: Registration Screen

IS0 9001:2008 Certified Journal |

© 2021,IRJET | ImpactFactor value: 7.529

Page 1723

"/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
JET Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

If not registered, create new account by entering all the
details on Registration Screen. After filling all the details
click on Register button H

CONTACTS

Allen
O + E Hey there ! | m using WhatsappOnJava
g Harvey Specter
CHATS CONTACTS Hey. | m Harvey
MrX

Vineesh 11:28 Hey there | | m using WhatsappOnJava

working &; Vineesh
Workspace2

Fig -18: Contacts Panel

Any fresh chat can be initiated by clicking “CONTACTS”
tabs that will load all the contacts. Clicking on any name
Fig -16: Chat Panel will again open Conversation Panel.

If registered- Chat panel will appear, click on listed £ woJ

About Contact

chats to start conversation.

Hey | Harvey
| 10:19

I m just testing my chatting
application
10:19
. Cool 111 |
10:20

Mute Notification Mute

Encryption

Message and calls are
end-to-end encrypted.

About and phone number

" gzg WhatsappOn)... @ Hey, I m Harvey
9889

=
| 7 1200px-Mark .. @ Report & Block

PEE
[20F] Dummy.odf @ K

©) ©
About Panel displays the information of the already
Fig -17: Conversation Panel registered client. Status text and number of the client is
shown here, along with the profile picture.

Fig -19: About Panel

Conversation panel loads all the chat data of
specific client as per the selection. Any message or file can
be sent by clicking on plus button, JFileChooser will pop-
up through which a selection can be made [10].

© 2021,IRJET | ImpactFactorvalue:7.529 | 1S09001:2008 Certified Journal | Page 1724

’,/ International Research Journal of Engineering and Technology (IRJET)

JET Volume: 08 Issue: 12 | Dec 2021

www.irjet.net

e-ISSN: 2395-0056
p-ISSN: 2395-0072

5. CONCLUSIONS

This paper presents an easy object-oriented approach
to build a platform independent chat application. All the
0O0Ps concept presented are build using Java as a language
of choice [8]. After complete implementation and
execution, it can be concluded that so many difficulties and
problems arise while designing fully functional chat server
which holds the user information. “WO0J” is an efficient and
light-weight chatting solution with easy-to-use GUI so that
user with less technical knowledge can also use it. Object
oriented design makes application easy to develop,
maintain and update any module, class as per
requirement.

Designing all functionalities in java makes it, highly
independent of external/other technologies thereby
extremely reducing the probability of getting the
exceptions.

No matter how good anything can be there is always
scope for improvement. Primary area of improvement is
the fresh implementation of encryption techniques to
secure the data when sent and received over network.
Secondary, cloud based online backup for chat data can be
added. Moreover, server-side application can be
redesigned to support multiple instances working
together in parallel in-order to handle the large requests
when the number of client increases.

REFERENCES

[1] “Unit-1: Object Oriented Methodology-1", IGNOU,
https://egyankosh.ac.in/bitstream/123456789/1009
0/1/Unit-1.pdf, © 2018 Copyright: IGNOU.

[21 “Programming paradigm”, Wikipedia,

https://en.wikipedia.org/wiki/Programming_paradig
m

[3]1 A.L Isaiah, A. C. 0dj, A. U. Rita, A. C. Verginia and O. H.
Anaya, “Technological Advancement in Object
Oriented Programming Paradigm for Software
Development”, International Journal of Applied
Engineering Research, ISSN 0973-4562, Volume: 14,
Number 8 (2019), pp. 1835-1841.

[4 R. S. Raut, “Research Paper on Object-Oriented
Programming (OOP)”, International Research Journal
of Engineering and Technology (IRJET), ISSN: 2395-
0056, Volume: 07 Issue: 10, Oct 2020.

[5] “Java - Polymorphism”, Tutorialspoint,

https://www.tutorialspoint.com/java/java_polymorp
hism.htm

[6] “Java Concurrency Tutorial”, Tutorialspoint,

[71

(8]

[

[10]

https://www.tutorialspoint.com/java_concurrency/in
dex.htm

“What is a Socket?”, The Java Tutorials, Oracle,

https://docs.oracle.com/javase/tutorial/networking/
sockets/definition.html

Pellet, Jean-Philippe, Amaury Dame, and Gabriel
Parriaux. "How beginner-friendly is a programming
language? A short analysis based on Java and Python
examples." (2019).

Fatima, N., and S. Arabia. "Performance comparison of
most common high level programming languages.”
International Journal of Computing Academic
Research (IJCAR) 5.5 (2016): 246-258.

Kendal S., (2209), Object Oriented Programming using
Java, Bookboon eBook Company, ISBN 978-87-7681-
501-1, 16P.

© 2021,IRJET | ImpactFactor value: 7.529

IS0 9001:2008 Certified Journal |

Page 1725

https://egyankosh.ac.in/bitstream/123456789/10090/1/Unit-1.pdf
https://egyankosh.ac.in/bitstream/123456789/10090/1/Unit-1.pdf
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm
https://www.tutorialspoint.com/java/java_polymorphism.htm
https://www.tutorialspoint.com/java/java_polymorphism.htm
https://www.tutorialspoint.com/java_concurrency/index.htm
https://www.tutorialspoint.com/java_concurrency/index.htm
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html

