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Abstract - Future cars are anticipated to be driverless; 
point-to-point transportation services capable of avoiding 
fatalities. To achieve this goal, auto-manufacturers have 
been investing to realize the potential autonomous driving. 
In this regard, we present a self-driving model car capable 
of autonomous driving using object-detection as a primary 
means of steering, on a track made of colored cones. This 
paper goes through the process of fabricating a model 
vehicle, from its embedded hardware platform, to the end-
to-end ML pipeline necessary for automated data 
acquisition and model-training, thereby allowing a Deep 
Learning model to derive input from the hardware platform 
to control the car’s movements. This guides the car 
autonomously and adapts well to real-time tracks without 
manual feature-extraction. This paper presents a Computer 
Vision model that learns from video data and involves 
Image Processing, Augmentation, Behavioral Cloning and a 
Convolutional Neural Network model. The Darknet 
architecture is used to detect objects through a video 
segment and convert it into a 3D navigable path. Finally, the 
paper touches upon the conclusion, results and scope of 
future improvement in the technique used. 
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1. INTRODUCTION  
 
This A ‘Self-Driving Car’ is one that is able to sense its 
immediate surroundings and operate independently 
without human intervention. The main motivation behind 
the topic at hand is the expeditious progress of applied 
Artificial Intelligence and the foreseeable significance of 
autonomous driving ventures in the future of humanity, 
from independent mobility for non-drivers to cheap 
transportation services to low-income individuals. The 
emergence of driverless cars and their amalgamation with 
electric cars promises to help minimize road fatalities, air 
and small-particle pollution, being able to better manage 
parking spaces, and free people from the mundane and 
monotonous task of having to sit behind the wheel. 
Autonomous navigation holds quite a lot of promise as it 
offers a range of applications going far beyond a car driven 
autonomously. The main effort here is to keep the humans 
out of the vehicle control loop and to relieve them from 
the task of driving. The prime requisite of self-driving 

vehicles are the visual sensors (for acquiring traffic insight 
of vehicle surroundings), microprocessors or computers 
(for processing the sensor information and transmitting 
vehicle control instructions) and actuators (to receive said 
instructions and be responsible for the longitudinal and 
lateral control of the car) [1-4]. Autonomous vehicles are 
also expected to be manoeuvred in many of the most 
complex human planned endeavours, such as asteroid 
mining [5]. The meteoric rise of AI along with deep 
learning (DL) methods and frameworks, have made 
possible the development of such autonomous vehicles by 
many venture companies at the same time. 

2. SOFTWARE DEVELOPMENT 
 
In this section we elucidate the entire software 
development process which includes data collection and 
labelling, model training and model deployment. 
 

1.1 Data Collection & Labelling 
 
Around 2,000 images were collected for two types of 
colored cones, namely: Orange and Blue. The cones were 
made from craft paper and were 4.5 centimeters tall with a 
base diameter of 3cm. The pictures included the cones laid 
out as track, single color cones, multiple same-colored 
cones and a mix of the two cones. A total of 16,382 cones 
were observed in the collected images with LabelImg being 
later used to label these cones from the images. ‘LabelImg’ 
is a graphical image annotation tool [6]. It is written in 
Python and uses Qt for its graphical interface. The 
LabelImg tool was used to label the photographed images 
in the YOLO format by drawing bounding boxes around the 
cones and naming each cone with their respective class i.e., 
color (orange or blue). After labelling via LabelImg, a 
common class file was created to all images which 
contained the two classes “Orange” and “Blue”. Another file 
was created unique to each image which contained the 
coordinates of each cone present in that image. For 
example, 1 0.490809 0.647894 0.235628 0.342580 is an 
entry from the class file created where the first parameter 
determines the class of the cones, the second and third 
parameters determine the midpoint of the bounding box 
while the fourth and fifth parameters determine the height 
and width of the bounding box. For the randomization and 
renaming of the images, a software tool called ‘Rename 
Expert’ was used. It randomized the images and then 
named them from 0-1681. Data augmentation was used to 
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increase the amount of data by adding slightly modified 
copies of already existing data. It involves injecting some 
noise, rotation and flipping of the images to increase the 
number of images used for training. It usually helps in 
preventing overfitting the model and acts as a regularizer 
[7]. 

1.2 Model Training 
 
YOLOv4 Tiny, a version of YOLOv4 developed for edge and 
lower-power devices, is a real-time object detection 
algorithm capable of detecting and providing bounding 
boxes for many different objects in a single image [8-11]. 
The model achieves this by dividing an image into regions 
and then predicting bounding boxes in addition to the 
probabilities for each region. Relative to inference speed, 
YOLOv4 outperforms other object detection models by a 
significant margin. We needed a model that prioritizes 
real-time detection and conducts the training on a single 
GPU as well. ‘Darknet’ is a framework like the TensorFlow, 
PyTorch and Keras that proved to be apt for the task at 
hand. While Darknet is not as intuitive to use, it is 
immensely flexible, and it advances state-of-the-art object 
detection results. We train the model on darknet and then 
later convert it to TensorFlow for ease in usability. This 
model can be tested on a physical model or on virtual 
simulators [12-15]. In terms of training the model, the 
labelled dataset was segregated into training and 
validation datasets and was uploaded on cloud VM. After 
that, the darknet was cloned and built on which the model 
was trained. The parameters were configured periodically 
to achieve the best weights. It was important that we 
convert our darknet framework into TensorFlow because 
only then could we make use of the TensorFlow lite model 
which is optimized for embedded devices such as Jetson 
Nano to make the inference at the edge. 

 

1.2 Deployment 
 
YOLOv4 Deployment includes reading the coordinate text 
data generated from the YOlO4 model into a NumPy 
framework and labelling the coordinate points according 
to the two classes, blue and orange. This is done by 
iterating through the text data line by line, and appending 
the required point objects into a python array, and finally 
converting the array into a NumPy format. Matplotlib is 
used to visualize the set of data points from the camera’s 
perspective, on a 10 x 10 cm2 adjusted screen. Using the 
Scikit-Learn Library, a Linear Regression model is trained 
using the NumPy data. Two different models are to be 
trained; one for the blue set of cones, and one for the 
orange. Using the ‘LinearRegression()’ predefined method 
in the Scikit-Learn library, we could easily create a simple 
regression model without having to build the entire code 
for the model ourselves. The data is zipped and iterated 
through using a for loop. The output generated is explicitly 
converted into a list format. Two lines are created that 
pass through the orange cones and the blue cones. Again, a 
graph is plotted of Matplotlib for visual aid of the lines. 

Next, the equations of the previously formed lines are 
derived using simple geometric calculations. Straight line 
equations of the type: ax + by + c = 0 are obtained for both 
blue and orange lines. Next, the point of intersection of the 
two lines is calculated using the formula of point of 
intersection. The offset of this line is calculated from the 
centre of the screen and the x-coordinate of each point is 
subtracted by the corresponding point on the centre of the 
screen. This value is the mean deviation and will be used 
further to calculate the angle by which servo attached on 
the assembly is to be turned. Fig. 1 shows the outcome of 
the entire video capture and path mapping process. 
 

 
Fig -1:  Video capture and path mapping process 

 

3. Hardware Design 
 
Before The car was designed and built with the proper 
placement and positioning of electronic components, such 
as the camera, in mind. It consists of three main parts, the 
steering assembly, the spur gear gearbox and the wheels. 
The steering system has a rack and pinion type design, 
chosen for its simple assembly and for providing easier 
and more compact control over the car. A 3-sided gear box 
ensures the effortless placement and positioning of the 
axles and larger gears. Given the opposing forces caused 
by the axles and front chassis, it also stays strong and 
sturdy. Spur gears are used in the gear box as they have 
high power transmission efficiencies (95% to 99%) and 
are simple to design and install. The wheels are designed 
and entirely 3D printed to have built-in suspension 
providing additional steering stability. Because the wheels 
must be flexible, TPU (Thermoplastic Polyurethane) is 
used to produce them. All other 3D printed components 
were produced using PLA (Polylactic acid) as it’s easy to 
use, has a remarkably low printing temperature compared 
to other thermoplastics and produces better surface 
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details and sharper features. A list of all materials is given 
below: 

List Of Materials: All components required for the 
prototype, including sensors, actuators, power supply, and 
hardware, are listed here. Fig. 2 and Fig. 3 show all the 3D 
printed parts and their assembly in SoildWorks Simscape 
respectively. 

• 3D Printed Parts 

• 608zz Bearings (4x) 

• Nvidia Jetson Nano  

• 1200KV Brushless DC Motor  

• 20A ESC (Electronic Speed Controller) 

• 5000mAh Power Bank  

• 11.1V - 2200mAH LiPo Rechargeable Battery 

• PCA9685 16 Channel Servo Driver  

• TowerPro SG90 180° Rotation Servo Motor  

• Logitech C615 HD Webcam 

 

Fig -2: 3D Printed parts 

 

Fig -3: Car assembly on Solidworks Simscape 

4. Functionality 
 
Before A Nvidia Jetson Nano single-board computer (SBC) 
serves as both the brain and the communication node in 
the prototype control system. This SBC receives data from 
the camera, analyses them, and integrates them into the 
navigation system to determine the steering angle. A 11.1V 

- 2200mAH LiPo battery is used solely to power the 
vehicle’s propulsion system, that is, the 1200KV Brushless 
DC Motor with a 20A ESC. A 180° rotation servo motor with 
a torque of 1.2KgCm, controlled by the PCA9685 16 
Channel Servo Driver, is used to steer the car. Fig. 4 and Fig. 
5 show a flowchart of the instruction feedback loop and a 
schematic diagram of the hardware connections 
respectively. Fig. 6 shows the entire assembled car. 

 

Fig -4: Flowchart of the instruction feedback loop 

 

Fig -5: Circuit Diagram 

 
Fig -6: Assembled Car 

5. CONCLUSIONS 
 
Through this paper, we present an approach for designing 
and building a model self-driving car based on the concept 
of Behavioral Cloning. This approach being an end-to-end 
one does not require any of the conventional tasks of 
feature extraction or connection of various modules, 
which are often monotonous, manual in nature and 
necessary for efficient working. Our model car is tried and 
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tested in real life against various standard models such as 
DenseNet-201, Resnet-50, and VGG19 for the comparison 
and performance. The final proposed model is a 
convolution-based, ten 2D-Convolutional Layers, one Flat 
Layer and four Dense Layers model. When compared with 
other Deep Learning based models, our model seems to 
have outperformed all of the aforementioned standard 
models by a substantial margin. The work presented 
through this paper can be realized to build vehicles 
capable of autonomous steering and driving. Additional 
training data of real-world obstacles with different track 
situations and conditions may be required to increase the 
agility and robustness of the system. 
 

6. Future Scope 
 
Through this project, we aimed to provide proof of 
concept for self-driving cars that can solely rely on vision-
based object detection techniques for navigation, rather 
than the conventional feature extraction-based lane 
detection techniques. Results obtained on our model car 
made it clear that our approach towards object detection 
as a means of steering has either outclassed or is at-par 
with humans in the parameters being tested for. 
Reinforcement learning methods can be introduced in 
addition to this method to better performance. This 
method can be used as a prototype for future citywide self-
driving cars projects. It can also be used exclusively, or in 
addition to conventional lane detection, to further 
improve on accuracy of self-driving cars. Via these 
techniques, automobiles might truly serve as end-to-end 
personal transportation devices and may give rise to an 
entire ecosystem of car-pooling or car sharing services as 
well as numerous start-ups thereby making personal 
transport cheaper, faster and safer. However, when 
implementing in the real world, many more parameters 
might be introduced which may increase the complexity of 
such a system while affecting the performance of the car. 
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