
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1455

Design and Development of an Autonomous Car using Object Detection

with YOLOv4

Rishabh Chopda1, Saket Pradhan2, Anuj Goenka3

1Dept. Of Computer Engineering, Thakur College of Engineering & Technology, India, Maharashtra, Mumbai
2Dept. Of Information Technology, Thakur College of Engineering & Technology, India, Maharashtra, Mumbai

3Dept. Of Computer Engineering, Thakur College of Engineering & Technology, India, Maharashtra, Mumbai
---***--

Abstract - Future cars are anticipated to be driverless;
point-to-point transportation services capable of avoiding
fatalities. To achieve this goal, auto-manufacturers have
been investing to realize the potential autonomous driving.
In this regard, we present a self-driving model car capable
of autonomous driving using object-detection as a primary
means of steering, on a track made of colored cones. This
paper goes through the process of fabricating a model
vehicle, from its embedded hardware platform, to the end-
to-end ML pipeline necessary for automated data
acquisition and model-training, thereby allowing a Deep
Learning model to derive input from the hardware platform
to control the car’s movements. This guides the car
autonomously and adapts well to real-time tracks without
manual feature-extraction. This paper presents a Computer
Vision model that learns from video data and involves
Image Processing, Augmentation, Behavioral Cloning and a
Convolutional Neural Network model. The Darknet
architecture is used to detect objects through a video
segment and convert it into a 3D navigable path. Finally, the
paper touches upon the conclusion, results and scope of
future improvement in the technique used.

Key Words: autonomous, self-driving, computer vision,
YOLO, object detection, embedded hardware

1. INTRODUCTION

This A ‘Self-Driving Car’ is one that is able to sense its
immediate surroundings and operate independently
without human intervention. The main motivation behind
the topic at hand is the expeditious progress of applied
Artificial Intelligence and the foreseeable significance of
autonomous driving ventures in the future of humanity,
from independent mobility for non-drivers to cheap
transportation services to low-income individuals. The
emergence of driverless cars and their amalgamation with
electric cars promises to help minimize road fatalities, air
and small-particle pollution, being able to better manage
parking spaces, and free people from the mundane and
monotonous task of having to sit behind the wheel.
Autonomous navigation holds quite a lot of promise as it
offers a range of applications going far beyond a car driven
autonomously. The main effort here is to keep the humans
out of the vehicle control loop and to relieve them from
the task of driving. The prime requisite of self-driving

vehicles are the visual sensors (for acquiring traffic insight
of vehicle surroundings), microprocessors or computers
(for processing the sensor information and transmitting
vehicle control instructions) and actuators (to receive said
instructions and be responsible for the longitudinal and
lateral control of the car) [1-4]. Autonomous vehicles are
also expected to be manoeuvred in many of the most
complex human planned endeavours, such as asteroid
mining [5]. The meteoric rise of AI along with deep
learning (DL) methods and frameworks, have made
possible the development of such autonomous vehicles by
many venture companies at the same time.

2. SOFTWARE DEVELOPMENT

In this section we elucidate the entire software
development process which includes data collection and
labelling, model training and model deployment.

1.1 Data Collection & Labelling

Around 2,000 images were collected for two types of
colored cones, namely: Orange and Blue. The cones were
made from craft paper and were 4.5 centimeters tall with a
base diameter of 3cm. The pictures included the cones laid
out as track, single color cones, multiple same-colored
cones and a mix of the two cones. A total of 16,382 cones
were observed in the collected images with LabelImg being
later used to label these cones from the images. ‘LabelImg’
is a graphical image annotation tool [6]. It is written in
Python and uses Qt for its graphical interface. The
LabelImg tool was used to label the photographed images
in the YOLO format by drawing bounding boxes around the
cones and naming each cone with their respective class i.e.,
color (orange or blue). After labelling via LabelImg, a
common class file was created to all images which
contained the two classes “Orange” and “Blue”. Another file
was created unique to each image which contained the
coordinates of each cone present in that image. For
example, 1 0.490809 0.647894 0.235628 0.342580 is an
entry from the class file created where the first parameter
determines the class of the cones, the second and third
parameters determine the midpoint of the bounding box
while the fourth and fifth parameters determine the height
and width of the bounding box. For the randomization and
renaming of the images, a software tool called ‘Rename
Expert’ was used. It randomized the images and then
named them from 0-1681. Data augmentation was used to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1456

increase the amount of data by adding slightly modified
copies of already existing data. It involves injecting some
noise, rotation and flipping of the images to increase the
number of images used for training. It usually helps in
preventing overfitting the model and acts as a regularizer
[7].

1.2 Model Training

YOLOv4 Tiny, a version of YOLOv4 developed for edge and
lower-power devices, is a real-time object detection
algorithm capable of detecting and providing bounding
boxes for many different objects in a single image [8-11].
The model achieves this by dividing an image into regions
and then predicting bounding boxes in addition to the
probabilities for each region. Relative to inference speed,
YOLOv4 outperforms other object detection models by a
significant margin. We needed a model that prioritizes
real-time detection and conducts the training on a single
GPU as well. ‘Darknet’ is a framework like the TensorFlow,
PyTorch and Keras that proved to be apt for the task at
hand. While Darknet is not as intuitive to use, it is
immensely flexible, and it advances state-of-the-art object
detection results. We train the model on darknet and then
later convert it to TensorFlow for ease in usability. This
model can be tested on a physical model or on virtual
simulators [12-15]. In terms of training the model, the
labelled dataset was segregated into training and
validation datasets and was uploaded on cloud VM. After
that, the darknet was cloned and built on which the model
was trained. The parameters were configured periodically
to achieve the best weights. It was important that we
convert our darknet framework into TensorFlow because
only then could we make use of the TensorFlow lite model
which is optimized for embedded devices such as Jetson
Nano to make the inference at the edge.

1.2 Deployment

YOLOv4 Deployment includes reading the coordinate text
data generated from the YOlO4 model into a NumPy
framework and labelling the coordinate points according
to the two classes, blue and orange. This is done by
iterating through the text data line by line, and appending
the required point objects into a python array, and finally
converting the array into a NumPy format. Matplotlib is
used to visualize the set of data points from the camera’s
perspective, on a 10 x 10 cm2 adjusted screen. Using the
Scikit-Learn Library, a Linear Regression model is trained
using the NumPy data. Two different models are to be
trained; one for the blue set of cones, and one for the
orange. Using the ‘LinearRegression()’ predefined method
in the Scikit-Learn library, we could easily create a simple
regression model without having to build the entire code
for the model ourselves. The data is zipped and iterated
through using a for loop. The output generated is explicitly
converted into a list format. Two lines are created that
pass through the orange cones and the blue cones. Again, a
graph is plotted of Matplotlib for visual aid of the lines.

Next, the equations of the previously formed lines are
derived using simple geometric calculations. Straight line
equations of the type: ax + by + c = 0 are obtained for both
blue and orange lines. Next, the point of intersection of the
two lines is calculated using the formula of point of
intersection. The offset of this line is calculated from the
centre of the screen and the x-coordinate of each point is
subtracted by the corresponding point on the centre of the
screen. This value is the mean deviation and will be used
further to calculate the angle by which servo attached on
the assembly is to be turned. Fig. 1 shows the outcome of
the entire video capture and path mapping process.

Fig -1: Video capture and path mapping process

3. Hardware Design

Before The car was designed and built with the proper
placement and positioning of electronic components, such
as the camera, in mind. It consists of three main parts, the
steering assembly, the spur gear gearbox and the wheels.
The steering system has a rack and pinion type design,
chosen for its simple assembly and for providing easier
and more compact control over the car. A 3-sided gear box
ensures the effortless placement and positioning of the
axles and larger gears. Given the opposing forces caused
by the axles and front chassis, it also stays strong and
sturdy. Spur gears are used in the gear box as they have
high power transmission efficiencies (95% to 99%) and
are simple to design and install. The wheels are designed
and entirely 3D printed to have built-in suspension
providing additional steering stability. Because the wheels
must be flexible, TPU (Thermoplastic Polyurethane) is
used to produce them. All other 3D printed components
were produced using PLA (Polylactic acid) as it’s easy to
use, has a remarkably low printing temperature compared
to other thermoplastics and produces better surface

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1457

details and sharper features. A list of all materials is given
below:

List Of Materials: All components required for the
prototype, including sensors, actuators, power supply, and
hardware, are listed here. Fig. 2 and Fig. 3 show all the 3D
printed parts and their assembly in SoildWorks Simscape
respectively.

• 3D Printed Parts

• 608zz Bearings (4x)

• Nvidia Jetson Nano

• 1200KV Brushless DC Motor

• 20A ESC (Electronic Speed Controller)

• 5000mAh Power Bank

• 11.1V - 2200mAH LiPo Rechargeable Battery

• PCA9685 16 Channel Servo Driver

• TowerPro SG90 180° Rotation Servo Motor

• Logitech C615 HD Webcam

Fig -2: 3D Printed parts

Fig -3: Car assembly on Solidworks Simscape

4. Functionality

Before A Nvidia Jetson Nano single-board computer (SBC)
serves as both the brain and the communication node in
the prototype control system. This SBC receives data from
the camera, analyses them, and integrates them into the
navigation system to determine the steering angle. A 11.1V

- 2200mAH LiPo battery is used solely to power the
vehicle’s propulsion system, that is, the 1200KV Brushless
DC Motor with a 20A ESC. A 180° rotation servo motor with
a torque of 1.2KgCm, controlled by the PCA9685 16
Channel Servo Driver, is used to steer the car. Fig. 4 and Fig.
5 show a flowchart of the instruction feedback loop and a
schematic diagram of the hardware connections
respectively. Fig. 6 shows the entire assembled car.

Fig -4: Flowchart of the instruction feedback loop

Fig -5: Circuit Diagram

Fig -6: Assembled Car

5. CONCLUSIONS

Through this paper, we present an approach for designing
and building a model self-driving car based on the concept
of Behavioral Cloning. This approach being an end-to-end
one does not require any of the conventional tasks of
feature extraction or connection of various modules,
which are often monotonous, manual in nature and
necessary for efficient working. Our model car is tried and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1458

tested in real life against various standard models such as
DenseNet-201, Resnet-50, and VGG19 for the comparison
and performance. The final proposed model is a
convolution-based, ten 2D-Convolutional Layers, one Flat
Layer and four Dense Layers model. When compared with
other Deep Learning based models, our model seems to
have outperformed all of the aforementioned standard
models by a substantial margin. The work presented
through this paper can be realized to build vehicles
capable of autonomous steering and driving. Additional
training data of real-world obstacles with different track
situations and conditions may be required to increase the
agility and robustness of the system.

6. Future Scope

Through this project, we aimed to provide proof of
concept for self-driving cars that can solely rely on vision-
based object detection techniques for navigation, rather
than the conventional feature extraction-based lane
detection techniques. Results obtained on our model car
made it clear that our approach towards object detection
as a means of steering has either outclassed or is at-par
with humans in the parameters being tested for.
Reinforcement learning methods can be introduced in
addition to this method to better performance. This
method can be used as a prototype for future citywide self-
driving cars projects. It can also be used exclusively, or in
addition to conventional lane detection, to further
improve on accuracy of self-driving cars. Via these
techniques, automobiles might truly serve as end-to-end
personal transportation devices and may give rise to an
entire ecosystem of car-pooling or car sharing services as
well as numerous start-ups thereby making personal
transport cheaper, faster and safer. However, when
implementing in the real world, many more parameters
might be introduced which may increase the complexity of
such a system while affecting the performance of the car.

REFERENCES

[1] F. Endres, J. Hess, J. Sturm, D. Cremers, and W.

Burgard, “3-d mapping with an rgb-d camera,” IEEE
Transactions on Robotics, vol. 30, no. 1, pp. 177–187,
2014.

[2] M. Tipping, M. Hatton, and R. Herbrich, “Racing line
optimization,” in US Patent, March 2013.

[3] L. Cardamone, D. Loiacono, P. Lanzi, and A. Bardelli,
“Searching for the optimal racing line using genetic
algorithms,” in Computational Intelligence and Games
(CIG), August 2010.

[4] K. Kritayakirana and J. C. Gerdes, “Using the centre of
percussion to design a steering controller for an
autonomous race car,” Vehicle System Dynamics, vol.
50, no. sup1, pp. 33–51, 2012.

[5] H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep
learning-based image recognition for autonomous
driving,” IATSS Research. Elsevier B.V., Dec. 2019, doi:
10.1016/j.iatssr.2019.11.008.

[6] darrenl, (2015) LabelImg (Version Window_v1.8.0)
[Source code]. https://github.com/tzutalin/labelImg

[7] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall,
“Activation Functions: Comparison of trends in
Practice and Research for Deep Learning,” Nov. 2018.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:
Towards Real-Time Object Detection with Region
Proposal Networks,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi:
10.1109/TPAMI.2016.2577031.

[9] R. Kulkarni, S. Dhavalikar, and S. Bangar, “Traffic Light
Detection and Recognition for Self Driving Cars Using
Deep Learning,” Proc. - 2018 4th Int. Conf. Comput.
Commun. Control Autom. ICCUBEA 2018, pp. 1–4,
2019, doi: 10.1109/ICCUBEA.2018.8697819.

[10] A. K. Jain, “Working model of Self-driving car using
Convolutional Neural Network, Raspberry Pi and
Arduino,” in Proceedings of the 2nd International
Conference on Electronics, Communication and
Aerospace Technology, ICECA 2018, Sep. 2018, pp.
1630–1635, doi: 10.1109/ICECA.2018.8474620.

[11] J. Kim, G. Lim, Y. Kim, B. Kim, and C. Bae, “Deep
Learning Algorithm using Virtual Environment Data
for Self-driving Car,” in 1st International Conference
on Artificial Intelligence in Information and
Communication, ICAIIC 2019, Mar. 2019, pp. 444–448,
doi: 10.1109/ICAIIC.2019.8669037.

[12] Y. Kang, H. Yin, and C. Berger, “Test Your Self-Driving
Algorithm: An Overview of Publicly Available Driving
Datasets and Virtual Testing Environments,” IEEE
Trans. Intell. Veh., vol. 4, no. 2, pp. 171–185, Mar.
2019, doi: 10.1109/tiv.2018.2886678.

[13] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim:
High-Fidelity Visual and Physical Simulation for
Autonomous Vehicles,” 2018, pp. 621–635.

[14] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V.
Koltun, “CARLA: An Open Urban Driving Simulator,”
Nov. 2017.

[15] B. Wymann, C. Dimitrakakis, A. Sumner, E. Espié, and
C. Guionneau, “TORCS: The open racing car simulator,”
2015.

