
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1326

Analysis of Hardware Impact on Software Performance

Yeshwanth Sai Kandula1, Bindu Bhargavi Madireddy2, Sourab B R3

1Dept. of Computer Science and Engineering, Amrita School of Engineering,
Amritapuri, Kerela, India

2Dept. of Electronics and Communication Engineering, DVR & Dr. HS MIC College of Engineering,
Kanchikacherla, Andhra Pradesh, India

3Dept. of Information Science and Engineering, Dayananda Sagar College of Engineering,
Bengaluru, Karnataka, India

---***--
Abstract - In order to build applications that are fast and
reliable, we generally consider having efficient algorithms
and programming is enough. But it is also vital to
understand the underlying hardware and the various costs
associated with it while designing software. If we know the
fundamentals of programming and algorithms very well, it
is easy to tell that quicksort is quicker than bubble sort.
However, sometimes it is not enough to analyze and
understand why some programs perform well or why they
don't. Sometimes, we also need to understand the hardware
and how it affects the efficiency of a program. This paper
analyzes and examines how various memory and cache-
related aspects affect the performance of a C++ program.

Key Words: software, performance, efficiency,
hardware, impact, cache, memory, data.

1. INTRODUCTION

In these modern times, software applications have become
an integral part of our day-to-day life. For most necessities,
they have become a simple, viable, and flexible solution.

When a software program is being developed, we
generally emphasize choosing relevant algorithms, design
patterns, software architecture and implementing them
efficiently in the desired programming language. However,
we often fail to consider the design of the underlying
hardware of systems for which we are developing the
program. Modern computer architectures have many
aspects that can impact the performance of an object-
oriented program, such as cache locality, cache coherence,
true and false sharing between CPU cores, memory
alignment, branch prediction, instruction pipeline, and
some more. Understanding these fundamentals will help
determine the reasons behind the program's
underwhelming metrics when it is profiled. Over the
subsequent sections, we illustrate how some of these
factors affect the performance of C++ programs with some
examples.

2. ARRAY TRAVERSALS

2.1 Row major vs. Column major

In general, a 2D array can be conventionally traversed in
two ways: 1. row-by-row (row-major) 2. column-by-
column (column-major).

Fig-1: Row major and column major traversal of a 2D

array

Fig-2: Metrics for row-major & column-major traversal

Upon profiling these two traversals, it is observed that time
taken by column-major traversal is ~32x times of row-
major traversal (Fig-2). Even though both approaches have
the same number of iterations and memory access
requests, we can witness a significant difference in the time
taken.

Whenever the CPU performs a read operation, the memory
is fetched into the cache. Fundamentally, caches read/write
in the units of cache lines[1]. For a cache line size of 64

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1327

bytes, eight elements of an 8-byte integer array can fit into
a single cache line (8 * 8 bytes = 64 bytes) [2]. Therefore,
when the first element of the array is requested for access,
a 64-byte cache line is loaded onto the cache. Due to this,
the consecutive seven elements are also loaded. Hence, in
row-major traversal, there are fewer cache misses as
successive indexes are accessed. However, in the case of
column-major traversal, the consecutive requested
elements might not be available in the same cache line and
thus will result in frequent cache misses. Therefore,
scanning through contiguous memory is much faster
compared to the latter.

2.2 Row major vs. Column major on different array
sizes

Fig-3: Metrics for row-major & column-major traversal on

2D arrays of different sizes.

When the same tests are profiled, but by varying the size of
the array, the results are as shown in Fig-3. The graph
shows two sudden elevations when the array size exceeds
certain limits. Here, the first limit is the size of the L2 cache,
and the second is of the L3 cache. In the test case, as the
array grows larger, it will at some point exceed the L2 and
L3 cache sizes. In section 2.1, it was concluded that column-
major suffers from frequent cache misses and hinders
performance. In a similar fashion, when the array size
exceeds L2 cache size and can no longer fit in it, the
consecutive element that the CPU wants to access during
column-major might not be available even in the L2 cache.
This happens frequently and thus will result in more L2
cache misses. It is known that the higher the cache
capacity, the higher the latency[3]. Hence, an L2 cache miss
costs more than an L1's, and an L3 cache miss costs more
than an L2's. Therefore, a sharp rise occurs when the size
exceeds L2 cache capacity. Similarly, when the array can no
longer fit into the L3 cache size, the number of L3 cache
misses increases; Hence the hike in the graph. Whereas, for
row traversal, the graph's gradient remains consistent and
doesn't suffer from this problem as the CPU is accessing
contiguous memory blocks.

2.3 Bound by computation vs. Bound by data access

Fig-4: 2D traversal with some work

Fig-5: Bound by computation vs. bound by data access

The Fig-4 sample is a perfect example that differentiates
between performance bounded by computation and
performance bounded by data access.

We've observed and understood that column-major
traversal is way worse when compared with row-major.
However, in Fig-5, it is noticed that the graph for both cases
remained almost the same for most of the array sizes until
it crossed a specific limit. The reason is, the time taken by
computation (i.e., the square root operation over a hashed
value) is way higher that it overshadows the cost incurred
due to cache misses during column-major. But, after a
specific array size, the column-major traversal takes a hit in
performance while row-major remains consistent.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1328

Fig-6: Illustrating scenarios of Fig-3 & Fig-5 together.

This is because post this critical point (i.e., array size > L3
cache size), the cost incurred to cache misses (L3 level) is
significantly high that the memory access takes more time
than the computation itself. That is when the performance
is said to be bound by data access. In such cases, no matter
how much we improve our algorithm of square root and
hashing, the performance hindrance remains the same, as
the root cause of the problem is the way the data is
accessed.

2.4 Row major vs. Column major vs. Random access

Fig-7: Sample code for row, column & random traversal.

From the metrics (Fig-8) of random index access traversal,
it was observed that the random access traversal is taking
much more time than column-major traversal.

Fig-8: Metric results of code sample shown in Fig-7.

Fig-9: Visualization of Prefetcher.

This surfaced the significance of the prefetcher, which
exists between the CPU and cache, continuously monitors
all the traffic[4]. Whenever it notices a consistent pattern, it
prefetches the data by dynamically predicting what the
CPU might do next. In column-major, the jump between
two consecutive data access remains the same. However,
random access rules out any such pattern and inherently
suffers from a significant number of cache misses. As a
result, we observe that random access performs
considerably slower than column-major access.

3. LOCALITY OF REFERENCE

3.1 Spatial Locality

Given the structures, Foo and Bar, as shown in Fig-10, if
both these structures are frequently accessed
consecutively, then it is better advised to make a structure
of them together and store them as elements in data
structures as shown in Fig-11. This results in Foo and Bar
staying close to each other in the memory, thereby giving
better spatial locality[5].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1329

Fig-10: Arrays of Foo and Bar structures

Fig-11: Array of combined structure FooBar

3.2 Instruction Order

Fig-12 and Fig-13 depict operation instructions executed
by the CPU during a time interval on three variables
represented by green, orange, and blue. In the figures, a
green block indicates an operation executed by the CPU on
the green variable, and similarly for orange and blue
blocks.

Fig-12: Inefficient instruction order

Fig-13: Efficient instruction order

In Fig-12, by the time the CPU reaches the 2nd operation
on the green, the green variable may have already been
replaced by another data in caches and registers[6]. This
results in an increased probability of cache miss.
Therefore, unless the second operation on the green is
dependent on the first operation on orange, the pattern

shown in Fig-13 should be followed to increase the cache
hit rate.

4. MEMORY ALIGNMENT

4.1 Relationship between the order of declaring data
members and size of a struct

A sizeof (Struct) depends on how the data members are
ordered and their respective sizes. Memory of any data
type needs alignment, which depends on the system's
architecture[7]. In this section, an x64 architecture is
considered to illustrate a few examples.

Fig-14: Random ordering of data members in struct Foo

Fig-15: Declaring data members in the increasing order of
their size

In Fig-14, although the actual memory required by "c + d +
s + i" is only 15 bytes, the sizeof (Foo) results in 24 bytes.
This is because variable 'c' occupies the first 8-bits of
available 64-bits, and since the double 'd' needs 64 bits of
aligned space, it occupies the following 64-bit aligned
block, leaving a 7-byte hole in-between. Due to such data
alignment, the total size of Foo becomes 24 bytes.
However, in the case of Fig-15, as the data is declared in
increasing order of their sizes, the total length of Foo
becomes only 16 bytes. Thus, it is beneficial to structure
the data members of a class/structure in increasing order
of their sizes.

4.2 Data Packing

In Fig-15, a memory hole is noticed between the c and s
variables. To avoid them, the ‘packing’ attribute can be
used, as shown in Fig-16[8]. However, the way the packed
data is organized and accessed varies between
architectures[9, 10, 11]. For example, some architectures
do the packing as indicated below in Fig-16, where the 1st
byte of 'd' is placed in the last available byte of the first 8-
byte line, and the rest set in the next available 7-byte
aligned block.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1330

Fig-16: Memory visualization of a packed structure

In some architectures, every time an operation on 'double
d' is performed, the access visualization is as shown in Fig-
17. Some architectures have to read two 8-byte aligned
lines, shift them, combine them, and finally operate on
them. Simple memory access has now become much more
complex and costly now.

Fig-17: Visualization of unaligned memory access

When packing is used and tested on Core i7 and Core 2
Duo (Fig-18), the Core i7 system's execution is slightly
faster when the data is packed. But on the Core 2 Duo, the
performance takes a huge hit. As most software is
generally used on diverse system technologies with varied
underlying architectures, it is advised to align the data
manually and not force-pack the structures. This will help
avoid unforeseen costs in simple memory access
operations.

Fig-18: Aligned vs. packed data access.

5. CACHES IN MULTI-THREADING

5.1 True Sharing

Fig-19: Code sample to illustrate true sharing

Fig-20: Metric results of code presented in Fig-19.

It is known that usage of mutexes involves kernel-level
calls and context switches, which are costly[12]. But
sometimes std::atomic can also be slower. In the example
shown in Fig-19, 'work' is considered as the job assigned
to each new thread created. If it takes Y (ms) for a single
thread to complete this job, then it is expected that the
time taken by 4-threads on a 4-Core machine also be
nearly Y (ms), as each thread has a core each and can run
parallelly. However, the results in Fig-20 convey
differently.

Most of today's modern multi-core systems are designed
in such a way that different cores are assigned with fully
or partially separate caches. In Fig-21 example, each core
has an L1 cache, while they all have shared L2 and L3
caches.

Caches fundamentally operate on the granularity of cache
lines and not in terms of bytes. Hence, whenever some
memory has been modified by a processor, all the cache
lines of other cores' L1 caches that hold this memory block
will get invalidated[13]. Therefore, the variable 'a' has to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1331

be re-fetched into the L1 cache for the other processors to
continue their operations.

Fig-21: Each core has its own L1 Cache.

Fig-22: Visualization of cache status when core1 had
modified the value of 'a' – Part-1.

Fig-23: Visualization of cache status when core1 had
modified the value of 'a’ – Part-2.

In the Fig-19 example, when thread 't1' running on Core1
performed an atomic increment operation, the cache lines
on the other three cores will get invalidated and have to be
re-fetched for them to operate on updated memory. Such
behavior is thus leading to a significant decrease in
performance.

5.2 False Sharing

Fig-24: Code sample to demonstrate false sharing

In Fig-24, there are four integer variables, each taking up
to 4 bytes of memory. Considering these variables
occupied four consecutive 4-byte blocks in the memory, all
four values are likely to end up on the same cache line. It is
apparent that these four variables are independent of each
other and that each thread's operations in 'work' have no
dependency on what is happening in other threads. Yet,
they falsely assume they are dependent[14, 15].

Fig-25: Metrics visualization of running ‘work’ function of
Fig-24 with a different number of threads simultaneously.

As explained in section 5.1, Caches operate on the
granularity level of cache lines. Now, every time a thread
running on a core completes an atomic increment on its
respective variable, this invalidates the cache line that
holds this variable in all other cores. Incidentally, the other
three variables also exist on the same cache line. Hence,
the other cores face a cache miss, and the memory still has
to be re-fetched into caches. Due to this, all four cores
suffer from frequent cache misses, even though each
thread is operating on independent variables. Hence, the
performance is almost as bad as it was in the case of true
sharing (evident by comparing results in Fig-20 and Fig-
25).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1332

Fig-26: Visualization of memory addresses of variables
when alignas is used.

However, when these variables are aligned against the
cache line size (Fig-26), each of the a, b, c, d variables
occupy different cache lines, thereby removing the
possibility of false sharing. Hence, the time taken to
complete "work" by one thread and four threads remained
the same on a 4-core machine (Fig-27).

Fig-27: Not aligned vs. cacheline aligned.

6. CONCLUSION

From these observations and analysis of the gathered data,
it is evident that the memory model and cache designs of
hardware have a significant impact on the performance of
a software program. Considering these factors and
implementing cache-aware programming will significantly
help develop world-class software products and services.

REFERENCES

[1] Sae-eung, Suntorn, "Analysis of False Cache Line
Sharing Effects on Multicore CPUs" (2010). Master's
Projects.

[2] Radu Rugina, Martin C. Rinard, "ACM Transactions on
Programming Languages and Systems," Vol. 27, No. 2,
March 2005, Pages 185–235.

[3] A Hartstein, V Srinivasan, Thomas Puzak, P. G. Emma,
"On the Nature of Cache Miss Behavior: Is It√ 2," CF
'06: Proceedings of the 3rd conference on Computing
frontiersMay 2006 Pages 313–320.

[4] Fredrik Dahlgren, Michel Dubois, Per Stenstrom, F.
Dahlgren, M. Dubois, and P. Strenstrom, “Fixed and
adaptive sequential prefetching in shared memory
multiprocessors," 1993 International Conference on
Parallel Processing, pp. 56-63, August 1993.

[5] Ali Mahjur, A.H. Jahangir, Amir Gholamipour, "On the
performance of trace locality of reference,"
Performance Evaluation Volume 60, Issues 1–4, May
2005, Pages 51-72.

[6] Alan Jay Smith, "Cache Memories," ACM Computing
Surveys, Volume 14, Issue 3, Sept. 1982, pp 473–530.

[7] Nikeeta R. Patel "Data Structure Alignment,"
International Journal of Engineering Trends and
Technology (IJETT), V45(7),338-340 March 2017.
ISSN:2231-5381.

[8] Website-https://docs.oracle.com/cd/E19205-
01/820-7599/giqdb/index.html

[9] Intel® 64 and IA-32 Architectures Optimization
Reference Manual.

[10] Website-https://developer.arm.com/documentation/
100748/0616/Writing-Optimized-Code/Packing-
data-structures.

[11] Webstie-https://www.iar.com/knowledge/support/
technical-notes/compiler/accessing-unaligned-data/

[12] J. Torrellas, H.S. Lam, J.L. Hennessy, "False sharing and
spatial locality in multiprocessor caches," IEEE
Transactions on Computers, Volume: 43, Issue: 6, Jun
1994.

[13] Edaqa, How does a mutex work? What does it cost?
Website-https://mortoray.com/2019/02/20/how-
does-a-mutex-work-what-does-it-cost/

[14] Manoj Kumar PA, “A Survey of Cache Coherence
Protocols in Multiprocessors with Shared Memory,”
Proc. of the Intl. Conf. on Advances in Computer
Science and Electronics Engineering, 2012. pp 384-
388.

[15] William J. Bolosky, Michael L. Scott, "False Sharing and
its Effect on Shared Memory," 4th Symp. on
Experiences with Distributed and Multiprocessor
Systems (SEDMS), San Diego, CA, Sep. 1993.

