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Abstract - In order to build applications that are fast and 
reliable, we generally consider having efficient algorithms 
and programming is enough. But it is also vital to 
understand the underlying hardware and the various costs 
associated with it while designing software. If we know the 
fundamentals of programming and algorithms very well, it 
is easy to tell that quicksort is quicker than bubble sort. 
However, sometimes it is not enough to analyze and 
understand why some programs perform well or why they 
don't. Sometimes, we also need to understand the hardware 
and how it affects the efficiency of a program. This paper 
analyzes and examines how various memory and cache-
related aspects affect the performance of a C++ program. 
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1. INTRODUCTION 

In these modern times, software applications have become 
an integral part of our day-to-day life. For most necessities, 
they have become a simple, viable, and flexible solution.  

When a software program is being developed, we 
generally emphasize choosing relevant algorithms, design 
patterns, software architecture and implementing them 
efficiently in the desired programming language. However, 
we often fail to consider the design of the underlying 
hardware of systems for which we are developing the 
program. Modern computer architectures have many 
aspects that can impact the performance of an object-
oriented program, such as cache locality, cache coherence, 
true and false sharing between CPU cores, memory 
alignment, branch prediction, instruction pipeline, and 
some more. Understanding these fundamentals will help 
determine the reasons behind the program's 
underwhelming metrics when it is profiled. Over the 
subsequent sections, we illustrate how some of these 
factors affect the performance of C++ programs with some 
examples. 

 

 

 

2. ARRAY TRAVERSALS 

2.1 Row major vs. Column major 

In general, a 2D array can be conventionally traversed in 
two ways: 1. row-by-row (row-major) 2. column-by-
column (column-major). 

 
Fig-1: Row major and column major traversal of a 2D 

array 

 
Fig-2: Metrics for row-major & column-major traversal 

Upon profiling these two traversals, it is observed that time 
taken by column-major traversal is ~32x times of row-
major traversal (Fig-2). Even though both approaches have 
the same number of iterations and memory access 
requests, we can witness a significant difference in the time 
taken. 

Whenever the CPU performs a read operation, the memory 
is fetched into the cache. Fundamentally, caches read/write 
in the units of cache lines[1]. For a cache line size of 64 
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bytes,  eight elements of an 8-byte integer array can fit into 
a single cache line (8 * 8 bytes = 64 bytes) [2]. Therefore, 
when the first element of the array is requested for access, 
a 64-byte cache line is loaded onto the cache. Due to this, 
the consecutive seven elements are also loaded. Hence, in 
row-major traversal, there are fewer cache misses as 
successive indexes are accessed. However, in the case of 
column-major traversal, the consecutive requested 
elements might not be available in the same cache line and 
thus will result in frequent cache misses. Therefore, 
scanning through contiguous memory is much faster 
compared to the latter. 

2.2 Row major vs. Column major on different array 
sizes 

 
Fig-3: Metrics for row-major & column-major traversal on 

2D arrays of different sizes. 

When the same tests are profiled, but by varying the size of 
the array, the results are as shown in Fig-3. The graph 
shows two sudden elevations when the array size exceeds 
certain limits. Here, the first limit is the size of the L2 cache, 
and the second is of the L3 cache. In the test case, as the 
array grows larger, it will at some point exceed the L2 and 
L3 cache sizes. In section 2.1, it was concluded that column-
major suffers from frequent cache misses and hinders 
performance. In a similar fashion, when the array size 
exceeds L2 cache size and can no longer fit in it, the 
consecutive element that the CPU wants to access during 
column-major might not be available even in the L2 cache. 
This happens frequently and thus will result in more L2 
cache misses. It is known that the higher the cache 
capacity, the higher the latency[3]. Hence, an L2 cache miss 
costs more than an L1's, and an L3 cache miss costs more 
than an L2's. Therefore, a sharp rise occurs when the size 
exceeds L2 cache capacity. Similarly, when the array can no 
longer fit into the L3 cache size, the number of L3 cache 
misses increases; Hence the hike in the graph. Whereas, for 
row traversal, the graph's gradient remains consistent and 
doesn't suffer from this problem as the CPU is accessing 
contiguous memory blocks. 

2.3 Bound by computation vs. Bound by data access 

 

Fig-4: 2D traversal with some work 

 

Fig-5: Bound by computation vs. bound by data access 

The Fig-4 sample is a perfect example that differentiates 
between performance bounded by computation and 
performance bounded by data access. 

We've observed and understood that column-major 
traversal is way worse when compared with row-major. 
However, in Fig-5, it is noticed that the graph for both cases 
remained almost the same for most of the array sizes until 
it crossed a specific limit. The reason is, the time taken by 
computation (i.e., the square root operation over a hashed 
value) is way higher that it overshadows the cost incurred 
due to cache misses during column-major. But, after a 
specific array size, the column-major traversal takes a hit in 
performance while row-major remains consistent. 
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Fig-6: Illustrating scenarios of Fig-3 & Fig-5 together. 

This is because post this critical point (i.e., array size > L3 
cache size), the cost incurred to cache misses (L3 level) is 
significantly high that the memory access takes more time 
than the computation itself. That is when the performance 
is said to be bound by data access. In such cases, no matter 
how much we improve our algorithm of square root and 
hashing, the performance hindrance remains the same, as 
the root cause of the problem is the way the data is 
accessed. 

2.4 Row major vs. Column major vs. Random access 

 

Fig-7: Sample code for row, column & random traversal. 

From the metrics  (Fig-8) of random index access traversal, 
it was observed that the random access traversal is taking 
much more time than column-major traversal. 

 
Fig-8: Metric results of code sample shown in Fig-7. 

 
 

Fig-9: Visualization of Prefetcher. 

This surfaced the significance of the prefetcher, which 
exists between the CPU and cache, continuously monitors 
all the traffic[4]. Whenever it notices a consistent pattern, it 
prefetches the data by dynamically predicting what the 
CPU might do next. In column-major, the jump between 
two consecutive data access remains the same. However, 
random access rules out any such pattern and inherently 
suffers from a significant number of cache misses. As a 
result, we observe that random access performs 
considerably slower than column-major access. 

3. LOCALITY OF REFERENCE 

3.1 Spatial Locality 

Given the structures, Foo and Bar, as shown in Fig-10, if 
both these structures are frequently accessed 
consecutively, then it is better advised to make a structure 
of them together and store them as elements in data 
structures as shown in Fig-11. This results in Foo and Bar 
staying close to each other in the memory, thereby giving 
better spatial locality[5]. 
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Fig-10: Arrays of Foo and Bar structures 

 

 

Fig-11: Array of combined structure FooBar 

3.2 Instruction Order 

Fig-12 and Fig-13 depict operation instructions executed 
by the CPU during a time interval on three variables 
represented by green, orange, and blue. In the figures, a 
green block indicates an operation executed by the CPU on 
the green variable, and similarly for orange and blue 
blocks. 

 

Fig-12: Inefficient instruction order 
 

 

Fig-13: Efficient instruction order 

In Fig-12, by the time the CPU reaches the 2nd operation 
on the green, the green variable may have already been 
replaced by another data in caches and registers[6]. This 
results in an increased probability of cache miss. 
Therefore, unless the second operation on the green is 
dependent on the first operation on orange, the pattern 

shown in Fig-13 should be followed to increase the cache 
hit rate. 

4. MEMORY ALIGNMENT 

4.1 Relationship between the order of declaring data 
members and size of a struct 

A sizeof (Struct) depends on how the data members are 
ordered and their respective sizes. Memory of any data 
type needs alignment, which depends on the system's 
architecture[7]. In this section, an x64 architecture is 
considered to illustrate a few examples. 

 

Fig-14: Random ordering of data members in struct Foo 

 

Fig-15: Declaring data members in the increasing order of 
their size 

In Fig-14, although the actual memory required by "c + d + 
s + i" is only 15 bytes, the sizeof (Foo) results in 24 bytes. 
This is because variable 'c' occupies the first 8-bits of 
available 64-bits, and since the double 'd' needs 64 bits of 
aligned space, it occupies the following 64-bit aligned 
block, leaving a 7-byte hole in-between. Due to such data 
alignment, the total size of Foo becomes 24 bytes. 
However, in the case of Fig-15, as the data is declared in 
increasing order of their sizes, the total length of Foo 
becomes only 16 bytes. Thus, it is beneficial to structure 
the data members of a class/structure in increasing order 
of their sizes. 

4.2 Data Packing 

In Fig-15, a memory hole is noticed between the c and s 
variables. To avoid them, the ‘packing’ attribute can be 
used, as shown in Fig-16[8]. However, the way the packed 
data is organized and accessed varies between 
architectures[9, 10, 11]. For example, some architectures 
do the packing as indicated below in Fig-16, where the 1st 
byte of 'd' is placed in the last available byte of the first 8-
byte line, and the rest set in the next available 7-byte 
aligned block. 
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Fig-16: Memory visualization of a packed structure 

In some architectures, every time an operation on 'double 
d' is performed, the access visualization is as shown in Fig-
17. Some architectures have to read two 8-byte aligned 
lines, shift them, combine them, and finally operate on 
them. Simple memory access has now become much more 
complex and costly now. 

 

Fig-17: Visualization of unaligned memory access 

When packing is used and tested on Core i7 and Core 2 
Duo (Fig-18), the Core i7 system's execution is slightly 
faster when the data is packed. But on the Core 2 Duo, the 
performance takes a huge hit. As most software is 
generally used on diverse system technologies with varied 
underlying architectures, it is advised to align the data 
manually and not force-pack the structures. This will help 
avoid unforeseen costs in simple memory access 
operations. 

 

Fig-18: Aligned vs. packed data access. 

 

 
5. CACHES IN MULTI-THREADING 

5.1 True Sharing 

 
Fig-19: Code sample to illustrate true sharing 

 

Fig-20: Metric results of code presented in Fig-19. 

It is known that usage of mutexes involves kernel-level 
calls and context switches, which are costly[12]. But 
sometimes std::atomic can also be slower. In the example 
shown in Fig-19, 'work' is considered as the job assigned 
to each new thread created. If it takes Y (ms) for a single 
thread to complete this job, then it is expected that the 
time taken by 4-threads on a 4-Core machine also be 
nearly Y (ms), as each thread has a core each and can run 
parallelly. However, the results in Fig-20 convey 
differently. 

Most of today's modern multi-core systems are designed 
in such a way that different cores are assigned with fully 
or partially separate caches. In Fig-21 example, each core 
has an L1 cache, while they all have shared L2 and L3 
caches.  

Caches fundamentally operate on the granularity of cache 
lines and not in terms of bytes. Hence, whenever some 
memory has been modified by a processor, all the cache 
lines of other cores' L1 caches that hold this memory block 
will get invalidated[13]. Therefore, the variable 'a' has to 
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be re-fetched into the L1 cache for the other processors to 
continue their operations. 

 

Fig-21: Each core has its own L1 Cache. 

 

Fig-22: Visualization of cache status when core1 had 
modified the value of 'a' – Part-1. 

 

Fig-23: Visualization of cache status when core1 had 
modified the value of 'a’ – Part-2. 

In the Fig-19 example, when thread 't1' running on Core1 
performed an atomic increment operation, the cache lines 
on the other three cores will get invalidated and have to be 
re-fetched for them to operate on updated memory. Such 
behavior is thus leading to a significant decrease in 
performance. 

 

5.2 False Sharing 

 

Fig-24: Code sample to demonstrate false sharing 

In Fig-24, there are four integer variables, each taking up 
to 4 bytes of memory. Considering these variables 
occupied four consecutive 4-byte blocks in the memory, all 
four values are likely to end up on the same cache line. It is 
apparent that these four variables are independent of each 
other and that each thread's operations in 'work' have no 
dependency on what is happening in other threads. Yet, 
they falsely assume they are dependent[14, 15]. 

 

Fig-25: Metrics visualization of running ‘work’ function of 
Fig-24 with a different number of threads simultaneously. 

As explained in section 5.1, Caches operate on the 
granularity level of cache lines. Now, every time a thread 
running on a core completes an atomic increment on its 
respective variable, this invalidates the cache line that 
holds this variable in all other cores. Incidentally, the other 
three variables also exist on the same cache line. Hence, 
the other cores face a cache miss, and the memory still has 
to be re-fetched into caches. Due to this, all four cores 
suffer from frequent cache misses, even though each 
thread is operating on independent variables. Hence, the 
performance is almost as bad as it was in the case of true 
sharing (evident by comparing results in Fig-20 and Fig-
25). 
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Fig-26: Visualization of memory addresses of variables 
when alignas is used. 

However, when these variables are aligned against the 
cache line size (Fig-26), each of the a, b, c, d variables 
occupy different cache lines, thereby removing the 
possibility of false sharing. Hence, the time taken to 
complete "work" by one thread and four threads remained 
the same on a 4-core machine (Fig-27). 

 

Fig-27: Not aligned vs. cacheline aligned. 

6. CONCLUSION 

From these observations and analysis of the gathered data, 
it is evident that the memory model and cache designs of 
hardware have a significant impact on the performance of 
a software program. Considering these factors and 
implementing cache-aware programming will significantly 
help develop world-class software products and services. 
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