’// International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 08 Issue: 12 | Dec 2021

www.irjet.net

p-ISSN: 2395-0072

Automated Image Captioning Using CNN and RNN

Niyati Nilesh Gohell, Mohak ManghirmalaniZ, Ayush Manghirmalani3, Jayanth Guduru3, Aniket
Malsane>

Abstract - With the evolution of generation picture
captioning is a totally essential issue of virtually all industries
regarding information abstraction. To interpret such
information by a machine may be very complex and time-
consuming. For a device to apprehend the context and
surroundings info of an photo, it wishes a higher
understanding of the outline projected from the picture. Many
deep gaining knowledge of techniques have now not followed
conventional strategies however are changing the manner a
machine is familiar with and translates. Majorly the usage of
Captions and attaining a properly-described vocabulary
linked to images. With the improvements in technology and
ease of computation of extensive information has made it
possible for us to without problems observe deep gaining
knowledge of in several projects the usage of our non-public
computer. A solution calls for each that the content of the
photograph is thought and translated to that means within
the phrases of words, and that the phrases must string
collectively to be comprehensible. It combines both laptop
imaginative and prescient using deep mastering and herbal
language processing and marks a virtually tough trouble in
broader synthetic intelligence.

In this project, we create an automatic photo captioning
version the use of Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) to provide a series of texts
that great describe the photograph. Using Flickr 8000 dataset,
we have organized our model. As the image captioning
requires a neural network right here we've got nicely
described steps to carry out. To create a deep neural
community using CNN and RNN, We first hyperlink the
description to the photograph convolutional neural network
will take the image and segregate it into a number of traits,
the recurrent neural community will make this function into
well-described descriptive language.

The task makes use of the encoder-decoder model, wherein
the CNN which performs the function extraction and the
output of the encoder is fed to the decoder which approaches
the categorized features into suitable sentences. The
characteristic extraction could be finished by using the today's
Inception V3 module-50 era with method of switch learning in
order that we will adjust the venture-precise to our cause. The
language model uses herbal language toolkit for simple
herbal language processing and the structure used for the
recurrent neural networks is lengthy-brief term memory.

1. INTRODUCTION

Our project aims at creating an auto captioning model for an
image. This can be achieved by using CNN for image feature
classification. Then we are using RNN for generating the

which is a type of RNN model. The LSTM can learn from
sequential data like a series of words and characters. These
systems utilize hidden layers that connect the input and
output layers. Which makes a memory circle with the goal
that the model can learn from the past yields. So basically,
CNN works with spatial features and RNN helps in solving
sequential data.

This project uses advanced methods of computer vision
using Deep Learning and natural language processing using
a Recurrent Neural Network. Deep Learning is a machine
learning technique with which we can program the
computer to learn complex models and understand patterns
in a large dataset. The combination of increasing
computation speed, wealth of researchand the rapid growth
oftechnology. Deep Learning and Al is experiencing massive
growth worldwide and will perhaps be one of the world’s
biggest industries in the near future. The 21stcentury is the
birth of Al revolution, and data becoming the new 'oil’ for it.
Every second in today’s world large amount of data is being
generated. We need to build models that can study these
datasets and come up with patterns or find solution for
analysis and research. This can be achieved solely due to
deep learning.

Computer Vision is a cutting-edge field of computer
science that aims to enable computers to understand whatis
being seen in an image. Computers don’t perceive the world
like humans do.For them the perception is just sets of raw
numbers and because of several limitations like type of
camera, lighting conditions, clarity, scaling, viewpoint
variation etc. make computer vision sohard to process as it
is very tough to build a robust model that can work on every
condition.

The neural network architectures normally we see were
trained using the current inputs only. While developing the
system, the generating output does not consider the
previous inputs. It is because of neglecting any memory
elements present. That is why the use of RNN tackles the
memory issues that haunt the system. This led us to create
an efficient system.

caption. We have chosen Long Short-Term Memory (LSTM)

© 2021,IRJET | ImpactFactor value: 7.529

ISO 9001:2008 Certified Journal | Page 709

’,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 08 Issue: 12 | Dec 2021

www.irjet.net

p-ISSN: 2395-0072

1.1 Architecture Diagram

transform

Image

Image
feature vector

feature vector
(embed_size)

1.2 Background Study

[1] A Survey on Automatic Image Caption Generation -
Shuang Bai, Shan An

Image captioning approach mechanically producing a
caption for a photograph. As a lately emerged research place,
its miles attracting more and more interest. To obtain the
motive of picture captioning, semantic facts of pictures
desires to be captured and expressed in natural languages.
Connecting both research communities of computer vision
and natural language processing, photograph captioningis a
pretty tough challenge. Various methods have been
proposed to treatment this hassle. A survey on advances in
photo captioning research is given. Based on the technique
accompanied the photograph captioning procedures are
categorised into distinct training. Representative strategies
in each class are summarized, and their strengths and
boundaries are referred to.

[2] Improving Image Captioning via Leveraging
Knowledge Graphs - Yimin Zhou, Yiwei Sun, Vasant Honavar

In this the use of a knowledge graphs that capture
widespread or common-sense knowledge, to reinforce the
facts extracted from pics by the state-of- the-artwork
techniques for image captioning is explored. The outcomes
of the experiments, on several benchmark statistics sets
inclusive of MS COCO, as measured by using CIDEr-D, a
overall performance metric for picture captioning, display
that the variants of the kingdom-of- the-art techniques for
photo captioning that make use of the facts extracted from
expertise graphs can appreciably outperform people who
depend solely on the data extracted from snap shots.

[3] Image Captioning with Object Detection and
Localization - Zhongliang Yang, Yu-Jin Zhang,Sadaqat ur
Rehman, Yongfeng Huang

Automatically generating a herbal language description of an
photo is a challenge close to the heart of photo
understanding. In this paper, a multi- version neural
community approach intently associated with the human
visual system that routinely learns to describe the content
material of snap shots is presented. The version includes two
sub-models: an item detection and localization model, which
extract the statistics of gadgets and their spatial dating in
pictures respectively; Besides, a deep recurrent neural
network (RNN) based on lengthy quick-time period memory
(LSTM) gadgets with attention mechanism for sentences era.

Each phrase of the description could be robotically aligned to
unique items of the enter image whilst it is generated. This is
similar to the eye mechanism of the human visual gadget.
Experimental consequences on the Flickr 8k dataset
showcase the merit of the proposed technique, which
outperform previous benchmark models

[4] Convolutional Image Captioning - Jyoti Aneja, Aditya
Deshpande, Alexander G. Schwing

In latest years giant development has been made in
photograph captioning, the use of Recurrent Neural
Networks powered by means of lengthy-short-time period-
reminiscence (LSTM) devices. Despite mitigating the
vanishing gradient problem, and in spite of their compelling
potential to memorize dependencies, LSTM units are
complicated and inherently sequential throughout time.
However, the complex addressing and overwriting
mechanism blended with inherently sequential processing,
and big garage required because of back-propagation thru
time (BPTT), poses demanding situations at some point of
education.

2. METHODOLOGY
WORKING

Now, to create a deep neural network the usage of CNN and
RNN. We first hyperlink the description to the photograph
convolutional neural network will take the image and
segregate it into a number of traits, recurrent neural
network will make this feature into properly-described
descriptive language.

Proposed Model
CNN Encoder

The encoder is based totally on a Convolutional neural
network that encodes a picture right into a compact
representation. The CNN-Encoder is an Inception V3
module (Residual Network.One layer activation has using
skips series that depend on the device. And wherein it gets
inputted to every other layer, going even further into
network, accordingly making the use of inception v3
module viable.

© 2021,IRJET | ImpactFactor value: 7.529

ISO 9001:2008 Certified Journal | Page710

’,/ International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

JET Volume: 08 Issue: 12 | Dec 2021

www.irjet.net

p-ISSN: 2395-0072

RNN Decoder

The CNN encoder is followed with the aid of a recurrent
neural network that generates a corresponding sentence.
The RNN-Decoder consists in a unmarried LSTM layer
observed through one absolutely-connected (linear) layer.
The RNN community is trained on the Flickr 8k dataset. It is
used to are expecting the following phrase of a sentence
based totally on preceding phrases. The captions are offered
as a list of tokenized phrases in order that the RNN version
can teach and back propagate to lessen mistakes and
generate higher and more comprehensible texts describing
the photograph.

Flickr 8k dataset:

This dataset contains 8,000 images where each image
has 5 different descriptions based on the features and
context. Here they are well defined and used in various
different environments.

Inception V3 module:

There are 4 versions. The first Google Net must be the
Inception-v1, but there are numerous typos in Inception-v3
which lead to wrong descriptions about Inception versions.
These maybe due to the intense ILSVRC competition at that
moment. Consequently, there are many reviews within the
internet mixing up between v2 and v3. Some of the reviews
even think that v2 and v3are an equivalent with just some
minor different settings.

Hardware and Software Requirements

Hardware

° Processor: Minimum 1 GHz; Recommended 2GHz
or more.

° Ethernet connection (LAN) OR a wireless adapter
(Wi-Fi)

° Hard Drive: Minimum 32 GB; Recommended 64 GB
or more.

° Memory (RAM): Minimum 1 GB; Recommended 4
GB or above.

SOFTWARE
° Keras
° TensorFlow
° Jupyter Notebook

o Windows/Linux

DATASET/TOOL USED -

Flickr 8k dataset which comes with images and captions for
supervised learning.

Results

n

import numpy as np

from numpy import array

import pandas as pd

import matplotlib.pyplot as plt

matplotlib inline

import string

import os

from PIL import Image

import glob

from pickle import dump, load

from time import time

from keras.preprocessing import sequence

from keras.models import Sequential

from keras.layers import LSTM, Embedding, TimeDistributed, Dense, RepeatVector,\
Activation, Flatten, Reshape, concatenate, Dropout, BatchNormalization

from keras.optimizers import Adam, RMSprop

from keras.layers.wrappers import Bidirectional

from keras.layers.merge import add

from keras.applications.inception_v3 import InceptionV3

from keras.preprocessing import image

from keras.models import Model

from keras import Input, layers

from keras import optimizers

from keras.applications.inception_v3 import preprocess_input

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.utils import to_categorical

Using TensorFlow backend.

import os
for dirname, _, file_names in os.walk('/kaggle/input’):
for file_name in file_names:
print(os.path.join(dirname, file_name))

/kaggle/input /flicker8k-dataset/Flickr8k Dataset/FlickerBk_Dataset/2075641394_8b3eal822d.jpg
/kaggle/input /flicker8k-dataset/Flickr8k_Dataset/Flickergk_Dataset/3185662156_c877583¢53. jpg
/kaggle/input /flickersk-dataset/Flickrsk_Dataset/Flickersk_Dataset/2189181627_a445b13438.jpg
/kaggle/input/flickersk-dataset/Flickrsk_Dataset/Flickerk_Dataset/2234918971_89e8325918.jpg
/kaggle/input /flicker8k-dataset/Flickrk Dataset/Flickerk_Dataset/3381859683_2d5edbd8a3. jpg
/kaggle/input /flicker8k-dataset/Flickr8k_Dataset/Flickergk_Dataset/2678831281_dc84b3el5d. jpg
fkaggle/input/flickersk-dataset/Flickrek_Dataset/Flickersk_Dataset/172892461_a9a9762e13.jpg
/kaggle/input /flickersk-dataset/Flickrsk_Dataset/Flickerk_Dataset/3621623698_8895e336bc . jpg
/kaggle/input /flicker8k-dataset/Flickrk Dataset/Flickerk_Dataset/3498482671_4e62f31c35.jpg
fkaggle/input /flicker8k-dataset/Flickrék Dataset/Flickersk_Dataset/336551689_1385ab13%. jpg
fkaggle/input/flickersk-dataset/Flickrsk_Dataset/Flickersk_Dataset/2472720629_d9a6736356.pg
/kaggle/input /flickersk-dataset /Flickrsk_Dataset/FlickerBk_Dataset/2938316391_97382d142a.jpg
/kaggle/input /flicker8k-dataset/Flickrk_Dataset/Flickerfk_Dataset/3288987435_7882e35¢f8 . jpg
/kaggle/input /flicker8k-dataset/Flickr8k_Dataset/Flickergk_Dataset/3222749441_3bdfe@88e3. ji
fkaggle/input /flickersk-dataset/Flickrak_Dataset/Flickersk_Dataset/2684395843_ebe3desad
/kaggle/input/flickersk-dataset/Flickrsk_Dataset/Flickergk_Dataset/314948358_ec1958dc1d.
/kaggle/input/flicker8k-dataset/Flickrk_Dataset/Flickerk_Dataset/197167117_4b438b1872. jpg

txt = file.read()
file.close()
return txt

file_name = "/kaggle/input/flicker8k-dataset/Flickrsk_text/Flickrgk.token.txt
doc = loading_doc(file_name)

print(doc[:388])

1006268281_693bascbee . jpg#e
1000268201_693be8cbee . jpg#1
1006268281_693bascbee . jpg#2
1000268201_693bescbee . jpg#3

A child in a pink dress is climbing up a set of stairs in an entry way -
A girl going into @ wooden building -

A little girl climbing into a wooden playhouse .

A little girl climbing the s

def loading iption(doc):
mapping = dict()
for line in doc.split('\n'):
tokens = line.split()
if len(line) < 2:
continue
image_id, image_desc = tokens[8], tokens[1:]
image_id = image_id.split(’.')[8]
1mage_desc = * '.join(image_desc)
if image_1d not in mapping:
mapping[image_id] = list()
mapping[image_id].append(image_desc)
return mapping

descriptions = loading_description(doc)
print(‘Loaded: %d ' % len(descriptions))

Loaded: 8892

© 2021,IRJET | ImpactFactor value: 7.529

IS0 9001:2008 Certified Journal | Page711

/ International Research Journal of Engineering and Technology (IRJET)

JET Volume: 08 Issue: 12 | Dec 2021

www.irjet.net

e-ISSN: 2395-0056
p-ISSN: 2395-0072

list(descriptions.keys())[:5]

RSEH [1008268201 693baschoe’
'1081773457_577c3a7d7e’ ,

'1862674143_1b742ab4b8’ ,
'1883163366_44323f5815',
'1867129816_e794419615' |

181

descriptions| ' 100026828

ut "A child in a pink dress is climbing up a set of stairs in an entry way .°,
"A girl going into a wooden building .°,
‘A little girl climbing into a wooden playhouse .,
"A little girl climbing the stairs to her playhouse .",
‘A little girl in a pink dress going into a wooden cabin .']

descriptions|

[A black dog and a spotted dog are fighting’,
*A black dog and a tri-colored dog playing with each other on the road .°,

‘A black dog and a white dog with brown spots are staring at each other in the street .°,
‘Two dogs of different breeds looking at each other on the road .°,

*Two dogs on pavement moving toward each other .']

descriptions):
rans('‘, '‘, string.punctuation)
for key, desc_list in descriptions.items():

for 1 in range(len(ds list))

desc = desc_list[i
desc = desc.split()
desc = [word.lower() for word in desc]

desc = [w.translate(table) for w in desc]

desc = [word for word in desc if len(word)>1]
desc = [word for word in desc if word.isalpha()]
desc_list[i] = ' '.join(desc)

clean_descriptions(descriptions)

descriptions[' 188626

['child in pink dress is climbing up set of stairs in an entry way',
"girl going into wooden building’,

‘little girl climbing into wooden playhouse’,

‘little girl climbing the stairs to her playhouse’,

‘little girl in pink dress going into wooden cabin’]

sl

-data krgk_text /Flickr_sk.t
r').read().strip().split('\n'))
for 1 in img:
if i[len(images):] in train_images:
train_ing.append(1)
nsl: Z 2
test_images_file = '/kag ckergk-datas: k_text/Flickr_ g
test_images = set(open(test_images_file, 'r').read().strip().split('\n’))
test_img =
for i in img:
if i[len(images):] in test_images:
test_img.append(1)
n7:
descriptions = dict()
for line in doc.split('\n'):
tokens = line.split()
image_id, image_desc = tokens[8], tokens[1:]
if image_1d in dataset
if image_id not in descriptions
descriptions[image_id])
desc = 'startseq ' + join(image_desc) +
descriptions[image_id].append(desc)
return descriptions
_descriptions = load_clean_descriptions s.txt', train)
(tio a % len(train_descriptions))
Descriptions: train=6060
el
rocess(image_path):
1mage.load_img(image_path, target_size=(299,
image.img_to_array(img)
np.expand_dims(x, axis=8)
preprocess_input (x)
return x
1l

model = InceptionVd(weights="imagen

Downloading data from

96116736/96112376 [= - 3s Bus/step

el

descriptions['10@1773457_5

ut ['black dog and spotted dog are fighting’,
*black dog and tricolored dog playing with each other on the road’,
"black dog and white dog with brown spots are staring at each other in the street’,
‘two dogs of different breeds looking at each other on the road",
‘two dogs on pavement moving toward each other’]

]

all_desc = set()
for key in descriptions.keys():

[al1_desc.update(d.split()) for d in descriptions[key]]
return all_desc

vocabulary = to_vocabulary(descriptions)
print 1 ulary S % len(vocabulary))

iginal Vocabulary Size: 8763

2l:

def save descriptions, file_name):
lines
for key, desc_list in descriptions.items()
for desc in desc_list:
lines.append(key + + desc)
data = '\n'.join(lines)
open(file_name, 'w')
rite(data)
ose()
save_descriptions(descriptions, ‘descriptions.txt’)
N3]

def load_set(file_name):
doc = loading_doc(file_name)
dataset = 0
for line in doc.split(‘\n‘):
if len(line) < 1:
continue
1dentifier = line.split(y[e]
dataset.append(identifier)
return set(dataset)

file_name
train = lo:

1141

_Dat:

= '/ka
glob.glob(inages +

s

mages
mg =

126]: A
model_new = Model(model.input, model.layers[-2].output)

211
def encode(inage):

image = preprocess(image)
model_new.predict(image)

np. reshape(fea_vec, fea_vec.shape[1]
return fea_vec

1221

start = time()

= {

for img in train_img:
in

_train[img[len(images) encode(img)

s =", time()-start)

Time taken in seconds = 241.26520681381226

(231:
import pickle

Time taken in seconds = 39.84336953163147

126]:

pkl®, "wb") as encoded_pickle

with open("e ;
test, encoded_pickle)

2
pickle.dump(encodin

127

atures = load(open(ir
2 %d’ % len(train_features))

Photos: train=6060

[28]:
all_train_captions = []

for key, val in train_descriptions.items()
for cap in val:
all_train_captions.append(cap)
len(all_train_captions)

30008

© 2021,IRJET | ImpactFactor value: 7.529

IS0 9001:2008 Certified Journal |

Page 712

/ International Research Journal of Engineering and Technology (IRJET)
]F,‘T- Volume: 08 Issue:

12 | Dec 2021

www.irjet.net

e-ISSN: 2395-0056
p-ISSN: 2395-0072

(€]

f321:

[341:

vocab_size =
vocab_size

len(ixtoword) + 1

def nes(descriptions) :
all_desc = list()
for key in descriptions.keys():
[all_desc.append(d) for d in descriptions[key]]
return all_desc
def max_1 (descriptions):
lines = to_lines(descriptions)
return max(len(d.split()) for d in lines)
max_length = max_length(train_descriptions)
print('D th: %d° % max_length)

Description Length: 34

generator (descriptions, photos, wordtoix, max_length, num_photos_per_batch):
X1, X2, y = list(), list(), list()
n=@
while 1:
for key, desc_list in descriptions.items():
ne=1
photo = photos[key+ .jpg’]
for desc in desc_list
seq = [wordtoix[word] for word in desc.split() if word in wordtoix]
for 1 in range(1, len(seq)):

in_seq, out_seq = seq[:1], seq[i]
pad_sequences([in_seq], maxlen=max_length)[8]
[out_seq], num_classes=vocab_size)[

X1.append(photo)
X2.append(in_seq)
y.append(out_seq)

if n==num_photos_per_batch:
yield [[array(X1), array(X2)], array(y)]
X1, %2, y = list(), list(), list()
n=0
glove_dir = '/k input/glovesb28ed

embeddings_index
£ = open(os.path. join(glove_dir,

, ‘encoding=

for line in f:
values = line.split()
word = values[8]
coefs = np.asarray(values[
embeddings_index[word] = coefs
f.close()
print('Fc

% len(embeddings.index))

Found 40808 word vectors.

13sl:

f3s1:

1371

embedding_din = 200
embedding_matrix = np.zeros((vocab_size, embedding_dim))

for word, 1 in wordtoix.items():
embedding_vector = embeddings_index.get(word)
if embedding or is not None:
embedding_matrix[i] = embedding_vector

embedding_matrix.shape

(1652, 268)

5) (inputs1)
activation="relu’)(fel)

Dense(256,

inputs2 = Input(shape=(max_length,))

sel = Embedding(vocab_size, embedding_dim,
ropout(@.5) (sel)

LSTM(256) (se2)

mask_zero=True) (inputs2)

decoderi = add([fe2, se3])
decoder2 = Dense(256, activation='relu’)(decoder1)
outputs = Dense(vocab_size, activation= max') (decoder2)

model = Model(inputs=[inputsl, inputs2], outputs=outputs)

1381:

130]:

4:

152

1532

1se]

s10:

1461

1471:

148]:

model. sunmary()

Mode!

Param # Connected to

Layer (type)

input_3 (InputLayer)
input_2 (InputLayer)

;nhnddlng_‘\ (Embedding) , 34, 208) input_3[e][e]

ﬂrnpuutj (Dropout) input_2[e][e]

dropout_2 (Dropout) 34, 208) embedding_1[8][@]

EenseJ (Dense) dropout_1[@][8]

1stm 1 (LsTH) 467968 dropout_2[8][e]

add_1 (Add) dense_1[e] (8]
1stm_1[e][e]

dense_2 (Dense) add_1[e][e]

dense 3 (Dense) 224564 dense_2[e][8]

Total params
Trainable params
Non-trainable params: 8

model.layers[2]

ras.layers. enbeddings.Enbedding at @x7f7a3fofsbie>

model.layers[2].set_weights([embedding_matrix])
model.layers[2].trainable = False

model. conpile(loss="c

y', optimizer

epochs = 18
number_pics_per_bath = 3
steps = len(train_descriptions)//number_pics_per_bath

for 1 in range(epochs):
generator = data_generator (train_descriptions, train_features, wordtoix, max_length, number_pics_per_bath)
model.fit_generator(generator, epochs=1, steps_per_epoch=steps, verbose=1)
model.save('model ' + str(i) + '.hs')

Epoch 1/1
2800/2608 [
Epoch 1/1
2000/2008 |
Epoch 1/1
2800/2608 [
Epoch 1/1
2000/2008 |
Epoch 1/1
2800/2608 [
Epoch 1/1
2000/2008 |
Epoch 1/1
2800/2608 [
Epoch 1/1
2000/2008 |
Epoch 1/1
2800/2608 [
Epoch 1/1
2000/2008 |

965 48ms/step
97s 49ms/step
955 48ms/step
96s 48ms/step
955 48ms/step
96s 48ms/step
955 48ms/step
96s 48ms/step
97s 49ms/step

965 48ms/step

model.save_weights(

hs')

model. load_veights('mo

g . “rb") as encoded_pickle:
0ad(encoded_pickle)

o

encoding_test

def greedySearch(photo) :
q

for w in in_text.split() if w in wordtoix]
ces([sequence], maxlen=max_length)

yhat = model.predict([photo, sequence], verbost
yhat = np.argmax(yhat)

word = ixtoword[yhat]

in_text + word
if word :
break
final = in_text.split()
final = final[1:-1]
final = ' '.join(final)

return final

© 2021, IRJET |

Impact Factor value: 7.529

ISO 9001:2008 Certified Journal | Page713

u, International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
JET Volume: 08 Issue: 12 | Dec 2021 www.irjet.net p-ISSN: 2395-0072

[491:
for i in range(1@):

rn = np.random.randint(e, 1098)

pic = list(encoding_test.keys())[rn]

image = encoding_test[pic].reshape((1,2848))
x=plt.imread(images+pic)

plt. imshow(x)

plt.show()

print("Greedy:" greedySearch(image))
print(pic)

] 100 20 300 400

Greedy: two dogs play in the snow
2398605966_1d@c9e6a28. jpg

0 £
Fﬁ
50

100

150

20
250 (S
300 4 y
b LY
0 100 200 00 200
Greedy: two dogs play in the snow
2398685966_1d8c9%e6a28. jpg
CONCLUSION :

In this paper, we have presented a multimodal methodology
for automatic captioning of image based on InceptionV3 and
LSTM. The model proposed had been designed with encoder-
decoder architecture which was trained over a huge Flicker
8k dataset consisting of a set of 8000 images with their
respective captions. We adopted InceptionV3, a
convolutional neural network, as the encoder to encode an
image into a compact representation as the feature matrix.
Thereafter, a language model LSTM was selected as the
decoder to generate the description. The experimental
evaluations indicate that the proposed model is able to
generate accurate captions for images.

© 2021,IRJET | ImpactFactorvalue:7.529 | 1S09001:2008 Certified Journal | Page714

