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Abstract -In this paper, we propose a new automated 
quality- alert electrocardiogram (ECG) beat categorization 
method for effective analysis of ECG arrhythmias under 
unverified healthcare environments. The existed technique 
consists of three major stages: 1) the ECG signal quality 
assessment (“accept- able” or “unacceptable”) based on our 
earlier customized complete ensemble empirical mode 
decaying and temporal features; 2) the ECG signal 
reformation and R-peak recognition; and 3) the ECG beat 
categorization as well as the ECG beat extraction, beat 
arrangement, and normalized cross-correlation-based beat 
categorization. The exactness and robustness of the existing 

method are evaluated using dissimilar normal and  abnormal 
ECG signals taken from the standard MIT-BIH arrhythmia beat 
categorization method can significantly achieve false alarm 
reduction ranging from 24% to 93% under noisy ECG 
recordings. The R-peak detector achieves the average Se 
99.67% and positive predictivity  (Pp) 93.10% and the average 
sensitivity (Se) 99.65% and Pp 98.88% without and with 
denoising approaches, correspondingly. Results further showed 
that the proposed ECG beat extraction approach can improve 
the categorization accuracy by using CNN technique for 
categorization .By using CNN technique the results were better  
as the R-peak detection achieves the average Se=99.67% and 
Pp=93.10% and the average Se=99.65% and 
Pp=98.88%,without and with denoising  approaches, 
respectively. with the SQA approach, the R-peak detector 
achieves the average Se=99.86% and  Pp=99.84%.It shows 
that the proposed technique improves the  consistency with 
improved categorization accuracy and F1 score. database 
assessment results show that the proposed quality- aware ECG 
 
Key Words:  ECG beat classification, ECG arrhythmia 
recognition ,signal Quality assessment, Convolutional neural 
networks. 
                                                                                       

1.INTRODUCTION  
 
    Accurate and steady classification of electrocardiogram 
(ECG) beats is influential in automatic ECG diagnosis uses 
under resting, exercise and ambulatory ECG footage 
circumstances [1]–[8]. Some process have been offered with 
various signal processing methods and classifiers. 

Table 1 review the workings of the presented ECG beat 
classification techniques. The ECG beat classification method 
usually consists of three key steps: (i ) preprocessing, (ii) 
feature extraction, and (iii ) classification. 
 

1.1 Accessible ECG Beat Classification Methods 

The preprocessing stage is usually designed to block out 
backdrop noises by the  denoising  methods  as the two  
median  filters  [4]–[7],  highpass  filter  (HPF) with cut-off 
frequency of 1 Hz [8], bandpass  filter with 0.1-100 Hz [9], 
morphological filtering [10], multiscale principal component 
analysis (MSPCA) [11],  wavelet  trans-form [12], [13], band-
pass filtering with 5-12 Hz [12] for removal of baseline 
wanders; second order Butterworth low- pass filter (LPF) 
with 30-Hz cutoff frequency [8], bandpass filtering [9], [12], 
12-tap LPF [4], MSPCA filtering [11], morphological filtering 
[10], and  notch  filter  [8].  In  the  past methods, different 
signal processing techniques were proposed for  extracting  
the  features  from  ECG  signals. The features are: temporal 
morphological features [4], [12], [14], frequency domain 
features, wavelet morphological features, Stockwell 
transform (ST) features [9], Hermite coefficient features [15], 
[16], statistical features (time-domain, frequency-domain and 
time-frequency domain) [11], RR interval features [12], 
wavelet cross spectrum (WCS) and wavelet coherence 
(WCOH) features [13] and independent component analysis 
(ICA) [17]. Based on the extracted features, the beat 
classification was performed using the linear discriminant 
analysis (LDA) [4], neural network [18], neuro-fuzzy  
network [15], rule-based rough sets [14],  geometric template 
matching [19], block- based neural networks (BbNNs) [16], 
support vector machine (SVM) [12], particle swarm 
optimization (PSO) [20], multidimensional PSO (MD PSO) 
based multilayer perceptrons (MLPs) [21], hidden Markov 
models [22], mixture of experts with self organizing maps 
(SOM) and learning vector quantization (LVQ) algorithms 
[24], random forests (RF) classifier [11], extreme learning 
machine (ELM) [10] and 1-D convolutional  neural networks 
(CNNs) [23]. S. Kiranyaz et al. proposed patient-specific ECG 
beat classification approach based on the beat detection, the 
raw ECG morphology wave- form, beat timing information 
and adaptive 1-D  convolutional  neural networks (CNNs) 
[23]. 
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Table -1: REVIEW OF THE EXISTING ECG BEAT 
CLASSIFICATION METHODS 

 
 
Note:MF,Median Filters;LPF low pass filter,GM,Geometric 

Matching;WCS,Wavelet Cross Spectrum,WCOH,Wavelet coherence,ptbdb,st-
petersburg Institue of cardiological Technics 12-lead,Arrhythmia 
Database;MoF,Morphological filtering,BFO,Bacteria Foraging Optamization 
algorithm.LD, Linear Discriminant, CEPP, Cool Edit Pro package; AHADB, 
American Heart Association Database; CUVTD.Creightoa University 
Ventricular Tachyarrhythmia Database, MITVAD, MIT-BIH Malignant 
Ventricular Arrhythmia Database: BbNN,Block-based neural Network; 
CNN,convolutional Neural Networks, SOM, self-Organization Map; LVQ 
,Learning vector Quantization;  ELM.  Extreme Learning Machine; MLP, 
Multi-Layer pereceptron; SVM, Support Vector Machine; PSO, Praticie 
swarm optimization;PCA,Prinicipal Component Analysis;ICA, Independent 
Component Analysis;MI Myocardial Infarction; DWT, Discrete Wavelet 
Transformation; BPF, Band pass Filter;GA, Genetic Algorithm, 
EANN,Evolutionary Artificial NN. 
 

The  authors  observed  that there is a significant variation in 
the system’s accuracy and reliability for the larger databases 
and noisy ECG signals with physiological artefacts and 
external noises. 
 

1.2   Related Works and Motivation 

    Extraction of accurate morphological features plays a 
vital role in most aforesaid ECG beat classification methods. 
Literature studies verified that the précised  determination 
of R-peaks, ECG beat taking out, and ECG morphological 
characteristic taking out is still a difficult job in  the  
existence of diverse nature of artifacts and noises as well as 
as well as baseline wander (BW), abrupt change (ABC), flat 
line (FL), power  line interference (PLI), muscle artifacts 
(MA) and instrument noise (IN) [25], [26]. The existence of 
the noises guide to more false alarms due to the extent of 
noisy feature parameters. Hence, the preprocessing stage of 
the existing most process employed denoising technique(s) 
to decrease the effect of the aforesaid noise sources. Even 
though the denoising techniques are able of restrain the 
artifacts and noises, the denoising method change the 
morphological outline of the confined  waves of both noise-
free and noisy ECG signals. The heartbeat waveform 
modification can guide  to  wrong  analysis of ECG 
arrhythmias due to the misclassification of the ECG beats. 

Thus, an automatic quality assessment of ECG signals can 
able of dropping false alarm rates and misclassification 
rates. Many endeavors have been made for fine and ranking 
the excellence of the ECG signals [27]–[29]. A few of the 
accessible ECG signal quality assessment (SQA) methods 
based on the diverse removed features from single  and  12- 
leads (I, II, II, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) ECGs  
are for a short time reviewed  in the next  section. 

1.3 ECG Signal Quality Assessment Algorithms 

   The ECG signal excellence assessment (ECG-SQA) plays a 
main  vital role in consistent heart rate variability (HRV) 
analysis, unsupervised telehealth monitoring, emotional 
recognition and biometric authentication [26], [29]. 
Accessible ECG-SQA process were based on the linear 
signal subspace scrutiny with supervised machine learning 
[27], RR-interval features with heuristic system and 
template identical [30], modulation spectral signal 
manageable [28], steadiness of PQRST complexes [31], 
with features like relative baseline and QRS complex sub-
band power, higher order statistics (skewness and 
kurtosis) and five important components along with 
support vector machine (SVM) classifier [29], [32], [33], 
empirical mode decomposition and statistical approaches 
[34], QRS complex and RR interval-based elements [35], 
multichannel adaptive filtering [36], time-domain features 
for instance amplitude, slope, etc., [37], [38], using features 
like crossing points among distinctive leads, and relative 
magnitude of QRS complex and noise  [39],  [40],  linear 
prediction  error  [41], a set of rules [42], kurtosis with 
ECG spectral distribution and Kalman filter [29], and 
modified complete ensemble empirical mode 
decomposition and temporal features [43]. Most aforesaid 
methods include two major steps: heartbeat feature 
extraction and signal quality grading. For computing the 
signal quality indexes (SQIs), different time-domain and 
spectral features, RR-interval and QRS complex-based 
features, higher-order statistical features are extracted 
from the processed ECG signal [27]–[43].  Some of the 
techniques used  a set of assessment rules and machine 
learning come up  to categorize the recorded ECG signals 
into two-four quality collections such as acceptable and 
unacceptable; acceptable, intermediate and  unacceptable; 
and  excellent,  very  good,  good  and bad [43] based on 
the exact SQI values. The restrictions  of  most techniques 
is the exact and consistent taking out of the ECG 
morphological features that can be extremely complicated 
under time-varying ECG morphological outlines  and heart 
rates [43]. 

1.4 Contribution of this Paper 
     In this paper, we present a quality-aware ECG beat classifi- 
cation process for unsupervised ECG monitoring 
applications. It consists of three major stages: (i ) the ECG 
signal quality assessment (ECG-SQA) (“acceptable” or 
“unacceptable”) based on our earlier modified complete 
ensemble empirical mode decomposition (CEEMD) and 
temporal features, (ii ) the ECG signal restoration and R-peak 
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recognition and (iii ) the ECG beat categorization including 
the ECG beat extraction, beat alignment and normalized 
cross-correlation (NCC) based beat classification. The ECG 
signal quality assessment was applyed based on the modified 
CEEMD algorithm and temporal features such as number of 
zerocrossings (NZC), maximum absolute amplitude (MAA), 
and short-term NZC envelope as described in our earlier 
work [43]. In the next stage, the acceptable ECG signals are 
additional  procedure for classifying the ECG beats present in 
the ECG signal. In the third stage, the heartbeat classification  
is  executed by the NCC based waveform resemblance metric 
score  which is intended  among a test heartbeat model and 
the reference models that are accumulated  in the heartbeat 
database. 

 
 

Fig -1: Block diagram of the existed quality-aware 
heartbeat classifier. 

 
The rest of this paper is organized as follows. Section 2 

describes the existed quality-aware heartbeat 
categorization  method. The ECG  signal  quality  evaluation 
is  presented for reviewing  the ECG signal quality. The ECG 
denoising approach is presented for conserveing the QRS 
complex morphology as hold back the backdrop noises. The 
noise- vigorous R-peak recognition approach is accessible 
for extracting  the ECG  beats. A  uncomplicated waveform 
comparison based approach is presented for ECG beat 
classification. Section 3  presents the presentation of the 
ECG beat categorization methods assess using the standard 
ECG databases in diverse variety of noises. Also, the false 
alarm  reduction (FAR) development is presented. Finally, 
conclusions are drawn in Section 4 . 

2. Existed Quality-Aware  ECG Beat Classifier 
  
    A basic block diagram of the existed quality-aware ECG 
beat categorization technique is demonstrate in Fig. 1 which 
consists of five steps: modified CEEMD based ECG decom- 
position, the CEEMD based ECG signal quality assessment, 
the  collective  R-peak  finding  and ECG  improvement, R-
peak arrangement and the ECG beat removal and the beat 
similarity identical. These steps are explained in the next 
subsections 

2.1 Customized CEEMD Based ECG Decomposition 

In this examine, the CEEMD is  used  for  decompose of 
the  ECG signals as an choice of the EMD and ensemble EMD 
algorithms since of two reasons: (i ) the mode mixing 
problem of the fundamental EMD, where dissimilar 
oscillations  be in the same IMF, or similar oscillations  be  
in unlike IMFs; and (ii ) the ensemble EMD (EEMD) produce 
unreliable number of IMFs [48]. Torres et al. proposed the 

CEEMD algorithm that inserts dissimilar awareness of 
Gaussian  noise  to the remaining signal after removeing 
successive intrinsic mode functions [48]. It was confirmed 
that the CEEMD algorithm gives  the  exact  rebuilding of 
the  signal and an enhanced  spectral partition of the 
modes, with a lower computational cost by  needs  less than 
half the sifting iterations as compared to that of the EEMD 
algorithm. 

     
 
  
 
 
 
 
 
 
 
 
 
 
Fig – 2: Demonstrate the IMFs obtained using the modified 
CEEMD algorithm for the (a) Noise-free ECG signal, and (b) 

Noisy ECG signal with  baseline wanders and muscle 
artifacts 

 
The compensation of modified CEEMD with noise-specific 
stopping criteria were explored  in our earlier works [43]. 
The existed stopping criteria is based on number of 
zerocrossings (NZC) and utmost maximum amplitude 
(MAA) to find the baseline wanders and to know its 
severity in the deposit signal. This stopping criterion can 
ease the computational load by stopping the additional 
decomposition which may not be necessary for analysing 
the ECG components [43]. The breakdown results of the 
modified CEEMD algorithm are illustrated in Fig. 2. It is 
noted that the first one or two IMFs (labelled as M1 and 
M2) capture fast varying components including MA, PLI 
and Gaussian noise and high frequency (HF) components 
of QRS  complexes.  In the meantime,  other IMFs capture 
the ECG components including low- frequency (LF) parts 
of the QRS complex and the P and T waves. It is additional 
noted that the baseline wander is captured in the deposit 
by using the proposed stopping criteria. 

2.2 ECG Signal Quality Assessment 
 

 In this study, the quality assessment of the ECG signals 
is performed based on our previous work [43]. For signal 
quality assessment, the decomposed IMFs are cluster into 
the HF sub-signals including the MA, PLI, IN and HF  
components  of QRS complexes, the LF signal as well as 
baseline wanders, and the ECG signal with the local waves 
such as P-wave, QRS-complex and T-wave. Fig. 3 (a) and   
(b) shows the reconstructed aforesaid sub-signals of the    
5 s ECG signal. The baseline wander is apprehended by the 
rest gained  using modified CEEMD algorithm that is 
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shown in  Fig. 3 (a(ii)) and (b(ii)). The ECG signal 
corrupted with  both  BW and unexpected change is  
shown in Fig.  4  (b).  It  is  noted that  the sudden change 
disturbance causes the sudden amplitude 

 

Fig – 3:  Illustrates the sub-signals of the original ECGs 

 
 
 
 
 
 
 
 
 

 
Fig – 4:  Illustrates the effectiveness of the proposed SQA 

approach in detecting the signal quality with 
performance improvement in beat classification for 

clean ECG signal and the presence of the abrupt change 
in the ECG signal.(a) Noise-free ECG signal. (b) ECG plus 

abrupt change. 

Differences  in the remains as shown in Fig. 4 (b(ii)). Based 
on our explanations, a global thresholding of 0.2 mV and 
limited MAA thresholding of 0.1 mV are used to sense the  
occurrence  of the sudden amplitude difference. For now, 
the BW can be efficiently detached by the heartbeat 
waveform removal. However, sudden amplitude variation 
can  deform the morphological shapes of the signal while 
suppressing the sudden components. Thus, the ECG signal 
segments corrupted with sudden change are measured as 
Unacceptable. It is noted from Figs. 2, 3 that the HF noises 
such as MA, PLI, IN are adequately detained in initial three 
IMFs. Also, high  frequency components of the QRS complex 
are also detained in the first few IMFs. To analyses the 
severity of the HF noises, the signal is created  by adding 
the first three IMFs as follows: 

              (1)          

where, h (n)  is the created HF signal. Figs. 5 (a(iii)), 
(b(iii)) show the recreated HF signal for an ECG signal 
tainted with MA and PLI waveforms. Figs. 5 (a(iii)), (b(iii)) 
show  that  the  recreated  HF signals sufficiently  confine 
the MA, PLI and the HF information of QRS complexes. For 
now, Fig. 4(a(iii)) shows that the contained  HF  
components of  the QRS complexes are conquered  in case 
of the noise-free  ECG signals. Further, Fig. 4 (b(vi)) shows  
that taking away of HF noises can change the shape of the 
heartbeat waveform that can direct to false classification 
of heart beats. 

   

         
 
 
 
 
 
 
 
Fig – 5:  Illustrates the effectiveness of the proposed 

SQA approach in detecting the signal quality with 
performance improvement in beat classification for ECG 

signal with BW and MA and the ECG signal with 
localized PLI (a) ECG plus BW and MA. (b) ECG plus PLI. 

For sensing  the occurrence of HF noises, smoothed 
mark envelopes of short-term zerocrossing  (STZ)  are  
removed and shown in Fig. 4(a(iv)) for noise-free ECG 
signal  and Figs. 4(b(iv)), 5(a(iv)) and 5(b(iv)) for noisy 
ECG  signals. Fig. 4(a(iv)) shows that the STZ mark 
envelope  is  composed  of  localized  short interval  pulses 
at the QRS complex areas and nil values in the low-
amplitude noise sections for the noise-free ECG  signals. 
For now, the STZ mark envelopes of the Figs. 4(b(iv)), 
5(a(iv))  and  5(b(iv))  show  the false peaks with wider 
duration for the ECG signals tainted   with HF noises. Thus, 
the  gate  signal  can be calculated  as 

             (2) 
 

   

. 
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The  gate  signals  are shown in Fig. 4(a(v)) for noise-free  
ECG  signal and Figs. 4(b(v)), 5(a(v)) and 5(b(v)) for the  
noisy ECG  signals. In this study, the  maximum absolute  
amplitude (MAA), short-term zerocrossing (STZ) and gate 
width duration features are used for the categorizing  the  
signal  into  acceptable  and unacceptable  quality. The 
acceptable excellence  signals are additional processed for 
categorization of heartbeats. 

2.3 Combined R-Peak Detection and ECG Signal 
        Enhancement      

The conservation of the QRS complex segments is most 
important  for  accurate  classification  of  different   shapes   
of  the ECG beats. In this examine, we  contemporary  the 
ECG  denoising  approach  with  instantaneous  QRS 
complex conservation and background noise suppression. 
The  recreated  ECG  is  obtained  by  summing  all the IMFs 
except  the first three  IMFs, 

                     (3) 

where  y [n] is the recreated   ECG signal and I is the totality 

number of IMFs. As the first three IMFs and rest are barred, 
the recreated  signal is free from the baseline wanders and 
some of HF noises. The restructured  signals  lead  to 
misclassification of the heartbeats. Consequently, this study 
are shown in Fig. 4(a(vi)) for  the  noise-free  ECG  signal  and 
Figs. 4(b(vi)), 5(a(vi)) and 5(b(vi)) for the noisy ECG  signals. 
It is observed that the HF components of the QRS complexes 
are not potted by this reformation process. Results of the Fig. 
4 (a(vi)), (b(vi)) and Fig. 5 (a(vi)), (b(vi)) express that the 
QRS complex shape difference can focuses on the 
conservation of the QRS complex portion by giving out the 
localized residual components that are present in the first 
three IMFs. Here, the  applicant ECG signal is  created  by  
adding  reconstructed  ECG  signals y (n ) and the   removed  
HF  portions  of  QRS complex from the HF   signal h(n)) 
within the duration of 100 ms centered at the sensed  R-peak 
instants [44]. The R-peak finding is executed  using the 
algorithm accessible in [45], which does not use any search- 
back rules with sets of finding thresholds and  learning  phase 
dissimilar other presented R-peak finding algorithms. For the 
detected R-peak time instantaneous  as given by (n1, n2, . . .  , n K 
), the HF component  

of the  QRS complex is given by 

 

        (4) 

where P  corresponds to the block size of 100 ms. The  

candidate  ECG signal is constructed as 

                                          (5) 
 

The  reconstruction  results of this procedure are shown in 
Fig. 4 (a(vii)), (b(vii)) and Fig. 5 (a(vii)), (b(vii)). Results 
show that the planned denoising approach can capable of 
conserveing  the HF portions of the QRS complexes. Finally, 

the heartbeats are removed from the recreated ECG signal 
using  the detected  R-peaks [26]. The pseudocodes of the 
R-peak finding and heartbeat extraction approaches are 
described  in  Algorithm 1. 

  2. 4 R-Peak Alignment and ECG Beat Extraction 

 The significance of the R-peak arrangement process is 
illustrated in Fig. 6. Fig. 6(a) and (b) show the removed ECG 
beats  from the two types of ECG signals and the collection of 
the removed  ECG beats without using the R-peak 
arrangement process, respectively. Fig. 6(c) and (d) show 
the removed ECG beats from the two types of ECG signals 
and the collection of the removed ECG beats with the R-peak 
alignment process. Some of the removed  ECG beat templates 
are shown in Fig. 7.These templates were stored in the ECG 
beat template database for categorize the heartbeats present 
in the ECG signal during the testing segment. 

Algorithm 1: R-Peak finding and Heartbeat Template taking 

out Algorithm 

Function: [ , ECG Beat] =  ECG beat Extraction 

( ) 

Input: x[n] := Input ECG signal; n = 1, 2, . . . , N 

Output: := identified R-peak instants in ECG 

signal 
Procedure 
Step 0: Use Gaussian window for band pass filtering  and 
compute first order difference 

  

tt[n] := filtfilt(h, 1, x); //zero phase filtering 
d[n] := tt[n + 1] - tt[n] 
Step1: Apply adaptive thresholding, 

  corresponds to 

the standard deviation of d[n]. 
b=ones(1,W)/W; and a=1; W = [2.5 ∗ Fs] 
Step 3: Peak detection using Gaussian derivative operator 
z[n]=s ∗ h //convolution of s[k] and h[k] 
rp=(sign(z[n]) > 0)&&(sign(z[n + 1]) < 0); 
// store locations of negative zero-crossing points in z[n] 
Step 4: R Peak location correction wsz=[0.05 ∗ Fs]// 
window size to search true R-peaks 
for k=1 to length(rp) do 
[Rpeak]=max{x[rp(k) − wsz : rp(k) + wsz]} //store 
corrected locations 
Endfor 

Step 5: ECG Beat Extraction and Template Creation 
; 

Read ECG beat: s1[m] = s[Rpeak[i] : Rpeak[i +1]]; m = 1, 2, 
....., M, 
Left shifting: s2[m] = s1[Rpeak[i] − shift : Rpeak[i + 1] − 
shift], 
Peak aligning by circular shifting: s3[m] = 

, 
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where,  [m]M is considered as a circular sequence of 

length M, 
Perform period normalization: s4[l] = interpft(s3, L), 
//interpolation in FFT domain 

Perform amplitude normalization: s5[l] = 

s4[l]/|max(s4[l])|, 

Perform peak centering: s6[l] = fftshift(s5[l]), 
Construct ECG beat matrix: b[i,:]:= s6[l], 
End. 
Perform the ensemble averaging of all the same beat types 
(Let p type) for template creation as 

 
End 

  

2.5 ECG Beat Classification 
 
In this study, we assess the future quality-aware ECG beat  
categorization  method  for  recognizing  the normal beat (N), 
ventricular ectopic beat (V), supra ventricular ectopic beat 
(S), and paced beat (P) using the standardized  cross-
correlation  measure  between the reference  heartbeat 
templates  and the test heartbeat  template. The heartbeat  

similarity  is  measured  as 
 

  

 

Fig- 6:  Illustrates  the  significance   of  the  R-peak  
alignment  for  ECG beat template creation. (a) Extracted 
ECG beats without R-peak alignment the extracted ECG 
beats as shown in (a); (c)  Extracted  ECG beats with R-

peak alignment; and (d) Ensemble of the R-peak aligned 
extracted ECG beats as shown in (c) for the two types of 

ECG signals.  
 
 
 
 
 

 

 

                                        

 

 

Fig - 7:  Examples of reference templates for 

different ECG beats. 

  

    (6) 

where,  represents the likeness measure, bm  is m th ECG 
beat, P is the number of classes of heartbeat types, M is the 
number of heartbeats and μ0, μ1 are the mean of the mth 
heartbeat bm and template Tp, respectively. Based on the 
RR-interval and  values, the test heartbeats are classified into 
different heartbeat classes. The pseudocode of the proposed 
quality-aware heartbeat classification method is afforded in 
Algorithm 2. Consequences of this stage are shown in Figs. 4 
(a(vii)), 5 (b(vii)). It can be seen that the heartbeats are 
suitably classified by using the recreated  ECG signal. It is 
noted  that heartbeats are not correctly classified in presence 
of severe muscle artifacts and abrupt amplitude differences 
shown in Figs. 4 (b(vii)), 5 (a(vii)). Results displayed that the 
signal quality appraisal plays an important role in 
constructing the dependable heartbeat templates by 
conserving the actual shapes of the heartbeats. Or else the 
original shapes of the heartbeat templates can be changed 
due to the averaging of  the noise-free heartbeats with noisy  
heartbeats which may  be included in the unverified 
reference heartbeat database formation throughout the 
training phase. Or else, the noisy features may be amassed in 
the case of ECG waveform features based heartbeat 
categorization methods. Additional, the SQA based heartbeat 
categorization  method can able of  reducing the  false alarm 
rates and misclassification of the noisy heartbeats which are 

inescapable in many practical  ECG recording situation  
 

Table .2  Accomplishment of the ECG-SQA 
Approaches 

 

Algorithm 2: Proposed Quality-Aware Heartbeat 
Classification Method 

Input:  = 360 Hz, N = 10* . 

x[n], n = 1, 2, …N ← Input signal;  ← Sampling frequency 

ECG signal quality assessment: 
Step0: decay the signal into modes or IMFs 
[IMF Residue] = Modified CEEMD(x) 
Step1: Obtain HF signal and BW signal 

  

Step2: recognition of ECG signal quality 

  

where,  and   are the kth block of BW signal 

and HF signal h[n] respectively. 
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Candidate ECG signal reformation  for acceptable 
quality: 
Step0: Obtain the reconstructed ECG signal as 

  

Step1: Obtain candidate ECG signal by adding HF component 

of QRS complex signal ( [n]) (obtained from 

eqn. (4)) and y[n] 

z[n] = y[n] + [n] // Candidate ECG signal 

Beat classification: 
Step0: Extract all the ECG beats using detected R-peaks 
using Algorithm 1 
Step1: Recognize the extracted ECG beat by computing 

similarity using (6) with the stored template  and RR 

interval variation 

 

which are inevitable in many realistic  ECG recording  
situations. 

3. Proposed method 

   In this proposed methodology we use CNN classifier for ecg 
classification and compare with SQA classifier. 

Convolutional Neural Network is a deep learning algorithm 
that shows great capability in image classification. CNN 
extract features of images by convolution and use the 
features to classify objects. It is designed to automatically 
and adaptively learn spatial hierarchies of features [17] 
through training. An image can be classified when the 
features vote for the most possible class that the image 
belongs to. 
 
Deep learning algorithms are deployed to two phases, one is 
training and another is inference. As a supervised learning 
algorithm, CNN uses a set of labelled images to train the 
network. Training process implements back propagation 
algorithm that updates the parameters in CNN. After the 
model has been fine-tuned and well trained, the learned 
model will be used to classify new samples. It is known as 
inference. The structure and parameters of a neural network 
is fixed once the training process has done, while inference is 
implemented every time a new data sample comes.  

Therefore, the acceleration of the inference phase is mainly 
discussed 

 

 
Fig -8: CNN Classifier Technique 

3.1 Standard CNN 

CNN is structured by layers. In an image classification 
problem, we expect an image as an input layer and values 
representing the possibility of different classes as an output 
layer. Between the input layer and the output layer, there are 
multiple hidden layers. The hidden layers include 
convolutional layers, activation function, pooling layers, fully 
connected layers etc. 

 

Fig – 9:  Structure of Convolutional Neural Network 

3.2 Convolutional Layer 

A convolutional layer has M input channels and N output 
channels. Each input channel contains a feature map sized 

 . The  input convolves with a convolution 

kernel sized and produces a  output 

feature map in one of the output channels. Figure 4.9 shows 
a convolution with a single kernel. In the convolution kernels 
are trained weights of the neural network. Convolution with 

N such kernels produces an output sized   

 

Fig - 9: Structure of Standard Convolutional Layer 

 is the feature map width, and  is the feature map 

height.  is the kernel width, and  is the kernel height. 

For each pixel in input C and output G, the expression is 
shown in Equation 7, where K represents the convolution 
kernel. 

(7) 

3.2 Fully connected layer 

In a fully connected layer, the feature map of the preceding 
layer is flattened to linear structure. Each unit in the feature 
map acts as a neuron and has full connections to all neurons 
in the next layer. In a fully connected layer with M input 
neurons and N output neurons .For each neuron in input X 
and output Y, the expression is shown in Equation 8, where 
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W represents the weight of each connection, and B 

represents the bias of each output neuron. 
 

         (8)   

                           

Fig - 10: Structure of Fully Connected Layer 

  4. RESULTS AND DISCUSSION 

The performances are estimated on several normal and 
abnormal ECG signals taken from 48 recordings of the 
MITBIH arrhythmia database which includes normal beat 
(N), premature ventricular contraction (PVC), atrial 
premature contraction (APC), left bundle branch block 
(LBBB), right bundle branch block (RBBB), paced beat (P), 
ventricular fibrillation (VF), fusion of ventricular and normal 
beat (F), nodal escape (functional) beat (j), fusion of paced 
and normal beat (f), non-conducted P-wave (x) and 
unclassified beat (Q) and different kinds of artefacts and 
noises. The ECG signals were digitized with a sampling rate 
of 360 Hz and 11-bit resolution over 10 mV range [47]. In 
this study, the noisy ECG signals are obtained by adding the 
electrode motion and muscle artifacts which are provided in 
the ECG noise generator database as mentioned in Ref. [46]. 
The benchmark measures such as sensitivity (Se), specificity 
(Sp), positive predictivity (Pp), and overall accuracy (OA) for 
evaluating the performance of the ECG-SQA approaches that 
are computed from the true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN) which are 
obtained for each of test ECG recordings [25], [30], [33], [35]. 
The categorization accuracy (CA), F1-score, and Kappa 
measures are used for assessing the performance of the 
heartbeat classification methods with and without signal 
quality assessment approach. 
 

4.1 Performance of ECG-SQA Approaches 

The presentation of the proposed ECG-SQA move toward and 
the SQA approaches reported in [30], [33], and [35]. The 
anticipated SQA achieves the highest overall accuracy of 
98.80% with Se of 99.02% and Sp of 98.25%. The anticipated 
approach offers good false alarm reduction as compared to 
the other move toward and does not use ECG fiducially 
features which may not be discriminative and dependable 
features for assessing the quality of the ECG signals. In this 
study, the SQA classifies the recorded ECG signals into 
“acceptable” and “unacceptable”. The acceptable ECG signal 
segment is further processed in the heartbeat classification 
stage. Otherwise the noisy ECG signal is not processed if it is 
sensed  as the unacceptable excellence. 

Table - 3: Without_SQA 

REC     Total      TP      FN     FP       Se        Pp        F1 

100 2273      2272      0      69       100     97.05     0.99 

101 1865      1864      1     124     99.95     93.76     0.97 

102 2187      2185      2      74     99.91     96.72     0.98 

103 2084 2071 13 55 99.38 97.41 0.98 

104 2229 2215 14 457 99.37 82.9 0.90 

105 2572 2570 2 678 99.92 79.13 0.88 

106 2027 2011 16 74 99.21 96.45 0.98 

107 2137 2137 0 111 100 95.06 0.97 

108 1763 1744 19 678 98.92 72.01 0.83 

109 2532 2523 9 56 99.64 97.82 0.99 

 

4.2 R-Peak Detection With and Without ECG-SQA 

Approach 

In literature, it is noted that most R-peak recognition 
approach had high false positive finding rate for the severe 
noisy ECG signals tainted with muscle artifacts. Some of the 
approaches had better R-peak detection rates for low and 
medium backdrop noise levels wherein the QRS complexes 
are important than the background noise. However, correct 
and reliable removal of the heartbeats and fiducially feature 
parameters can be the difficult task when the other ECG local 
waves are hidden in the muscle artifacts. The detection of 
noise peaks can lead to make usual false alarms which would 
be very annoying and disturbing The extracted noisy ECG 
beat waveforms may be misclassified due to the inexact 
measurements of the feature parameters at the classification 
stage. Thus, in the testing phase, the noisy characteristic 
parameters can enlarge the misclassification rate of the 
arrhythmias. Therefore, most R-peak detectors employed 
search-back heuristic rules with sets of amplitude, duration 
and period thresholds for rejecting the noise peaks. In 
practice, it may not be suitable due to the time-varying QRS 
complex  morphologies and heart rates. In this study, the 
SQA is included with a R-peak detection approach. Table 3 
précises the performance of the R-peak detection approach 
using the denoising approach, with and without ECG-SQA 
approaches. Results show that the anticipated denoising 
approach can drastically decrease the false positive 
detection rate without rising the false negatives. The R-peak 
detector attain the average Se = 99.67%, Pp = 93.10% and 
F1-score = 0.96, and the average Se = 99.65%, Pp = 98.88% 
and F1-score = 0.99 without and with denoising approaches, 
respectively. 
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With the SQA method, the R-peak finding  attains the average 
Se = 99.86%, Pp = 99.84% and F1-score = 1. From the  
studies, it is observed that the some of the ECG signals are 
extremely tainted with backdrop noises having the 
intersecting   spectra with the ECG local waves. Results show 
that the proposed denoising approach can conserve the shape 
of the QRS complexes that is significant for improving the 
accuracy  of heartbeat  classification 

Table – 4:  After Denoising 
 

 

Table –5: After SQA 
 

 

4.3 Performance of the Heartbeat categorization       
Methods 
 
In this study, the heartbeat categorization is executed based 
on the waveform similarity value measured using the 
normalized cross-correlation (NCC) metric. The collection 
heartbeat template of the similar heartbeats is created for 
each of the heartbeat classes. The comparison between a test 
heartbeat template and the reference ensemble heartbeat 
templates is computed at the categorization process. Ten-
fold cross-validation process is followed by dividing  a total 
numbers  of heartbeats  into ten disjoint subsets in which all 
beat classes are considered in each fold. One-fold is used as 
test dataset as the residual nine-folds are used as guiding a 
set for constructing the ensemble heartbeat templates for 
the proposed approach and creating heartbeat feature 
models for the other approaches. The justification procedure 
is repeated for ten times. The average performances of the 
heartbeat classification approaches are summarized in Table 
5 in terms of standard benchmark metrics such as class-
specific accuracy (CA), F1-score, Kappa statistic (κ) and false 
alarm reduction (FAR). 
 
The performance of cross-validation is figured using the 
kappa statistic to calculate the reliability of accuracy for four 
classes of heartbeats over ten-folds. It is noted that the 

CEEMD+NCC, Hermite, Geometric and Wavelet based 
categorization methods with the SQA approach had the 
categorization accuracy of 95.07%, 94.55%, 96.98%, and 
89.01% with kappa statistic (κ) of 0.98, 0.99, 0.98 and 0.91, 
correspondingly for the usual beat detection. Results further 
show that the higher kappa values can be achieved for the 
categorization accuracies of the quality-aware categorization 
method which can be consistent than the categorization 
method without SQA loom in the case of noisy ECG beats. 
The F1-score can be better from 0.2 to 0.72 and 0.32 to 0.70, 
respectively for the S and V beat classes of the CEEMD+NCC 
based method with the SQA approach. The main objective of 
this study to revealed  that the false alarms can be compact 
by using the SQA algorithm at the pre-processing stage. 
Table 5 shows that the false alarm decreases performance 
for each of the methods. Results show that the existed 
method can achieve FAR ranging from 24% to 93% under 
noisy ECG recordings. The Convolutional Neural Networks 
(CNN) classifier and two different pre-processing techniques 
of the ECG waveform are applied. One of these techniques 
uses Hermite basis functions expansion whiles the second 
characterization of the ECG by the cumulants of the second, 
third, and fourth orders. The CNN categorization achieves 
better performance match up  to existing technique. 
 

Table – 6: Performance of the classification methods 

 

5. CONCLUSION 

In this development, we present a new quality-aware ECG 
beat classification method which can be capable of reducing 
the false alarms and ensuring the reliability of set precise 
accuracies for the four classes of heartbeats in noisy ECG 
recordings. Assessment results on the standard MIT-BIH 
arrhythmia database display that the conservation of QRS 
complexes is most  vital  for improving the beat classification 
while the denoising procedure is useful for repression of 
backdrop noises. The R-peak recognition approach achieves 
the average Se = 99.67% and Pp = 93.10% and the average 
Se = 99.65% and Pp = 98.88%, without and with denoising 
approaches, respectively. With the SQA approach, the R-peak 
detector achieves the average Se = 99.86% and Pp = 99.84%. 
Convolutional Neural Network classification results show 
that the proposed quality-aware heartbeat classification 
method improves the consistency with improved 
classification accuracy and F1-score. For each of heartbeat 
classes, the proposed and existing heartbeat classification 
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methods had significant improvement in the false alarm 
reduction (FAR). Results further demonstrate that a quality-
aware ECG analysis system is most essential to ensure the 
accuracy and reliability of diagnosis of different types of 
arrhythmias under noisy ECG recording environments. The 
results prove that CNN categorization performs than the ECG 
Beat categorization. 
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