
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1658

Question Answering System Using NLP

Kushwanth Sai Lalam1, Jayanth Sattineni2, Hitesh Wadhwa3, Kotha Sandeep4, Samudrala Mohan
Karthik5

--***---
Abstract : Question Answering (QA) system in facts retrieval
is a venture of mechanically answering an accurate answer
to the questions requested by way of humans in natural
language using either a pre-structured database or a
collection of natural language documents. It gives the
simplest the asked statistics as opposed to looking at
complete files like seek engine. As facts in everyday lifestyles
are growing, retrieving the particular fragment of data even
for a simple query calls for massive and high-priced assets.
This paper describes the distinctive technique and
implementation information of question-answering machine
for popular language and proposes the closed domain QA
System for dealing with documents related to education acts
sections to retrieve more specific answers using NLP
strategies.

Keywords – NLP, QA System, database

1. INTRODUCTION

Question answering is an essential NLP hassle and a long-
status synthetic intelligence milestone. QA structures permit
a person to specific a question in natural language and get a
direct and brief reaction. QA systems are now determined in
search engines like google and phone conversational
interfaces, and that they're pretty top at answering easy
snippets of statistics. On extra difficult questions, but, these
commonly handiest cross as a long way as returning a list of
snippets that we, the customers, need to then browse via to
locate the Answer to our query.

Reading comprehension is the capability to study a piece of
textual content and then solution questions about it. Reading
comprehension is tough for machines because it requires
both herbal language information and knowledge of the
world

1.1 Problem Description

Today the world is full of articles on a large variety of topics.
We aimed to build a question-answering product that can
understand the information in these articles and answer
some simple questions related to those articles.

1.2 Proposed Solution

We plan to use Natural Language Processing techniques to
extract the semantic & syntactic information from these
articles and use them to find the closest Answer to the user's
question.

We'll extract NLP features like POS tags, lemmas, synonyms,
hypernyms, meronyms, etc., for every sentence and use the
Apache Solr server to store & index all this information. We'll

extract the same features from the question and form a Solr
search query. This query will fetch the Answer from the
indexed Solr objects.

The primary purpose for the use of Solr is that Solr helps
large-scale, disbursed indexing, seek, and
aggregation/statistics operations, allowing it to deal with
programs large and small. Last but no longer the least out of
the container capacity to deal with the synonyms or a few
different kinds of easier similarity of that type out of the
container.

Solr also helps actual-time updates and might manage
millions of writes in line with the second. For instance, at
Lucene/Solr Revolution, Salesforce shared that they've over
500 billion complicated — now not just logs — documents in
Solr and are doing 7 billion updates consistent with day with
a sub-100-millisecond question latency. Based on some of the
other talks at Revolution (Bloomberg, Microsoft, Wal-Mart, et.
Al.), in addition to knowledge of my organization's clients,
Salesforce isn't on my own in the numbers.

Implementation Details

Minimum Hardware Requirements:

● Processor: Intel i5 7th Gen

● RAM:8 GB

● Hard Disk Space:15 GB

Programming Tools:

● Python (version: 3.8.6) - terminal

● Apache Solr (version: 8.6.3)

● NLTK library (version: 3.5)

● Spacy library (version: 2.3.2)

● en_core_web_sm & json &glob

● pysolr(3.9.0) (It is a lightweight Python client
for Apache Solr)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1659

Architecture:

We divided the venture into the following seven steps:

Step 1:

● Read all of the sentences from the given corpus.

● Extract the following NLP functions from every sentence –
word tokens, lemmas, stems, synonyms, hypernyms,
hyponyms, holonyms, meronyms, named entities,
dependency parsed tree.

● We used the Spacey library to create a dependency parsed
tree of the sentence & saved it in a list.

Step 2:

● Send the sentence & its extracted capabilities to Apache
Solr for indexing.

Figure 1: managed-schema.xml

● Each listed object is a listing of key price pairs wherein
every secret is an NLP characteristic (ex. Synonyms,
hypernyms, and so on.) & its fee is stored in CSV layout.

● Solr has inner synonyms Txt report accepts CSV values of
words that aren't commonplace & precise to our area.

● Solr considers those values as synonyms when indexing
and querying. Ex.: UTD, The University of Texas at Dallas, UT
Dallas.

●This may be done via making a configuration alternate
inside the managed-schema document in Solr's listing as
proven in determine 1.

● At the stop of this step, the entire corpus would be indexed
and saved in Solr, geared up to handle the queries given to it
in a proper format after answering them.

Step 3:

● The software calls for questions to be saved in a AA.Txt
file & its route should be handed as a parameter at the same
time as running the program.

● The questions can be of 3 types: Who, When and Where

● The form of query is used to determine the named-entity
sort of solution required NER (Named Entity Recognition).

Step 4:

● Solr accepts questions in key-value layout, and it
additionally helps logical operators like AND, OR.

● We create a concatenated question of the extracted NLP
functions from the question.

● The cause behind this step is simple - to create a question
that allows you to have a more match score with the
specified sentence in the Solr Index.

● Using NLP features, we grow the possibilities of matching
in instances wherein the precise phrase within the question
doesn't arise within the sentence stored in Solr.

Ex: If the query has a token: 'founded' but its answer
sentence has a token: 'installed', the query would
nevertheless be capable of suiting them as they might be a
gift in the synonyms list.

 ● Some capabilities are extra in all likelihood to give better
matches, and they may be given desire over others by means
of adding boosting weights to them.

Question Type Required NER type of Answer

Who PERSON / ORG

When TIME / DATE

Where LOC / GPE

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1660

● A sample question is proven in parent 2:

Figure 2: Sample Query

Step 5:

● A connection is opened to Solr, and the query is parsed,
which returns a list of Solr items.

● These Solr gadgets include the pleasant possible matches
that Solr located for the given question.

● They are organized in the descending order of the suit
score, which Solr handles internally.

● Every object contains the identical capabilities that have
been indexed in Step 2. This allows us to extract any records
approximately those sentences without processing them
similarly, as a consequence saving computational time and
resources.

Step 6:

● The top five consequences for every seek question are
taken to extract the Answer.

● The best viable sentence is chosen from them using the
dependency Parsed tree gift in the Solr item of the sentence.

● The required Answer is extracted from the sentence the
usage of the dependency parsed tree tags & NERs. Ex: for
WHEN questions, tokens with DATE or TIME tags are
selected

Step7:

● The extracted results from Step 6 are stored in a JSON
format as follows:

{

"Question": "question string", "answers”:{

//answers to question here

},

"sentences" :{

//supporting sentences containing answers to question here

},

"documents" :{

//supporting Wikipedia documents containing answers to
question here

}

}

● One JSON object is created for every question. They are
saved in a JSON array & dumped into the 'answers.json' file.

● Figure 3 shows a screenshot of answers.json

In the making of the NLP Features.py module, which is step 2
and step 3

• Tokenization of words

• POS (part of speech) tagging

•Extracting Synonyms, Hypernyms, Hyponyms, Holonyms
and Meronyms as a list for further indexing.

• Returning NER(named entity recognition) to the main.py
module Also contributed to making a function to write
/append data to the JSON file.

• Entities that are in the answer.json file are the question, its
Answer, the sentence from which the Answer is extracted,
and the document is referred to extract the Answer

Problems encountered(standard):

● The phrases UTD, The Univ of Texas at Dallas, The UT
Dallas are used interchangeably within the questions or
corpus. We resolved it by means of making those phrases
synonyms inside the synonyms.Txt file. Also, some of the
extra synonyms that we may want to discover would be
useful.

● Getting the required sentences in pinnacle five
consequences in Solr turned into challenging. We resolved it
by the use of the boosted weights for a few features (entities,
word_tokens and required_entities)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1661

Conclusion

We tried to research all the simple concepts and then
implemented the documentation of NLTK was of much help.
Errors related to code were resolved through mutual
discussions, Stack Overflow, GitHub, YouTube. This project is
based on all the the out put we concluded through above
code snippet and also we will further improve in this to
make our QA system more effective.

References

[1]. Saranya R, Christopher Augustine," Schemes and
Approaches in Question Answering System", International
Journal of Advanced Research Trends in Engineering and
Technology (IJARTET), Vol. II, Special Issue X, March 2015.

[2]. Lehnert, W., 1977. The Process of Question Answering A
Computer Simulation of Cognition. Yale University, ISBN 0-
470-26485-3.

[3]. Zhang, D. & Lee, W., 2003. Question Classification using
Support Vector Machines. In Proceedings of the 26th Annual
International ACM SIGIR Conference.

[4]. Gaizauskas, R. & Humphreys, K., 2000. A Combine IR/NLP
Approach to Question Answering Against Large Text

Collections.In Proceedings of the 6th Content-
basedMultimedia Information Access (RIAO-2000).

[5]. Xu, J., Licuanan, A. &Weischedel R., 2003. TREC2003 QA at
BBN: Answering Definitional Questions. In Proceedings of the
12th Text Retrieval Conference.

