
               International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

                Volume: 08 Issue: 11 | Nov 2021                 www.irjet.net                                                p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 1127 

Prevention of Real-Time Attacks using One-Class Classification and 

Autoencoders using R 

Nikhil K1, Boppana Sai Sucheet2 

1Students, VIT University, Tamil Nandu, India 
---------------------------------------------------------------------***----------------------------------------------------------------------

Abstract - This project's main aim is to train our system to 
differentiate between lousy network traffic that may contain 
some Virus, malware to the system or any other type, and a 
standard network by using machine learning. Today's world 
uses a very high number of IoT related devices; a survey 
(business insider) said that in 2025 the total number of 50 
billion devices would exist; as the number increases, the threat 
would also be increased in the devices we would be using. This 
project presents how one-class classifiers — trained using 
gentle data — can be modelled in R to differentiate between 
normal and malicious traffic diverted to an IoT device. In this 
project, the system is trained using unsupervised / one-class 
based modelling approaches. The plan would understand the 
problems faced daily, and the training we used would be 
helpful for future uses. After the training of the system, the 
system is used in the real world to face the real new 
challenges, and by learning from the previous mistakes, it 
would be grown according to the user's problems and 
circumstances  
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1. INTRODUCTION  
 
1.1 Purpose 
 

As a group of machines learning enthusiastic, we feel that 
our project mainly focuses on solving some of the difficulties 
caused by the lack of implementation of the software into the 
networking devices that are being made and released into the 
market. Moreover, we would like to look into issues like 
reaching out to everybody because excellent and working 
software is tough to buy. Many people would not purchase it, 
making them vulnerable and a target to the malware in the 
network. When we look inside the software's working, it is 
targeted to a particular issue, and they resolve only that, but 
in day-to-day life, there are new types of malware used to get 
the information. So having software with a high price and 
targeted to one problem is not the key. Training the machines 
to avoid trafficking will also take some time, but training 
could make much difference in the decision making of a bad 
network. Moreover, complete exposure to the malware side 
of the network and its types could make the machine fully 
ready and also contented data set. So going through these 
processes once could be enough because we could save this 
information and insert it to the other machines directly as a 
plan of action or as a data set initially may save some time. 

 

1.2 Scope 
 

This project uses machine learning to learn through 
experience and adapt to defend against new malware in 
networks with previous experience. We are also using One-
Class Classifiers to implement machine learning, which will 
be very efficient and fast adapting. Since it is a recently 
developed algorithm, the software has a long life, yet it can be 
modified to the newer version by giving the software update 
to the user. Companies that offer this kind of software 
currently offer it at a high price, so installing it on every 
computer in an organization would be difficult. Reaching 
more organizations is not possible as this price would block 
them. By this, those companies are in danger of giving the 
information away and can fall into serious problems. 
However, the upcoming Start-ups and private organizations 
or government bodies can install this because it is free 
instead of buying software and for every system that would 
be present in the office, which may cost a lot, especially to the 
start-ups. 

2. Detailed description of information security 
concepts used in the project 
The dataset contains three types of web traffic data — benign 
traffic containing 40 395 records, Mirai traffic including 
652,100 records and Gafgyt traffic containing 316,650 
records. Each record contains 115 features generated by the 
publishers of the dataset using raw attributes of network 
traffic. The attack activity produced both Gafgyt and Mirai 
traffic. The two data sources were combined to construct this 
exercise's comprehensive set of malicious data (968,750 
records). It can be said that as the end-objective of a model — 
in this context — would be to allow nonthreatening traffic to 
pass to and from the device and remove transmission and 
reception of nasty data, a one-class classifier qualified to 
utilize benign data would effectively suit the intent. We 
employed 80% of the benign records to build up our model. 
This implies that 32, 316 records were used to prepare the 
prototype and (40,395 – 32,316) + (652,100 + 316,650) = 
976,829 documents were used to assess the performance of 
the model. 

3. One class classifier 
 
The idea here is to make the model only using mild cases and 
then use the educated model to identify new/unknown 
traffic instances using statistical and machine-learning 
approaches. If the target data is too different, according to 
some measurement, it is labelled as out-of-class. To this end 
and for an experiment, we will show how to spot-check one-
class classifiers — belonging to different families --in 
performance. Two one-class classifiers and their resultant 
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families to be used in this exercise are as follows: a. One 
Class Support Vector Machine from the usual ML family. b. 
Autoencoder from the deep learning family. In this review, 
we are implemented a One-Class SVM, and we are planning 
to show the Autoencoder from deep learning. In machine 
learning, one-class classification (OCC), also known as unary 
classification or class-modelling, tries to identify objects of a 
specific class amongst all things by primarily learning from a 
training set containing only the objects of that class. 
However, there exist variants of one-class classifiers where 
counterexamples are used to refine the classification 
boundary further. One-class characterization calculations 
can be utilized for parallel arrangement undertakings with a 
seriously slanted class circulation. These techniques can fit 
the input examples from the majority class in the training 
dataset, then be evaluated on a holdout test dataset. 
Although not designed for these problems, one-class 
classification algorithms can be practical for imbalanced 
classification datasets with few examples of the minority 
class or datasets with no coherent structure to separate the 
classes that a supervised algorithm could learn. The support 
trajectory machine, or SVM, algorithm developed initially for 
binary classification can be used for one-class classification. 
Whenever utilized for imbalanced characterization, it is wise 
to assess the standard SVM and weighted SVM on your 
dataset before testing the one-class rendition. When 
demonstrating one class, the calculation catches the 
thickness of the more significant part class and orders 
models on the limits of the thickness work as anomalies. This 
alteration of SVM is alluded to as One-Class SVM. This 
algorithm computes a binary operation that should catch 
areas in input space where the likelihood thickness resides 
(its help), that is, a capacity with the end goal that most of 
the information will live in the locale where the capacity is 
nonzero 
 

Fig -1: Architecture Diagram 

 
 

 
 

Fig -2: Demonstration of the project by R 
 

 
 

Fig -3: Demonstration of the project by R 
 

 
Fig -4: Demonstration of the project by R 
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Fig -5: Demonstration of the project by R 
 

4. Auto-encoders  
 
An autoencoder neural network is an unsupervised machine 
learning algorithm that applies back-propagation, setting the 
target values equal to the inputs. Auto-encoders are used to 
reduce the size of our information into a more miniature 
representation. Then, if anyone needs the original data, they 
can reconstruct it from the compressed data. An 
autoencoder aims to learn a model for a data set, typically for 
dimensionality reduction, by training the network to ignore 
signal noise. They work by compressing the input into a 
latent-space representation and reconstructing the output 
from this representation. 
 

4.1 Components of Auto-Encodes 
 
Encoder - This part of the network reduces the input into a 
latent space illustration. The encoder layer encodes the 
stored image as a reduced picture in a diminished 
dimension. The compressed image is the altered version of 
the original image.  
Code - This part of the network represents the compressed 
input that is fed to the decoder.  
Decoder - This layer interprets the encoded image back to 
the original dimension. The decoded image is a lossy 
rebuilding of the original image, reconstructed from the 
latent space representation. 

 

 
 

Fig -6: Working of Auto-Encoder 

 
4.2 Types of Auto-Encoders 
 
Convolution Auto-encoders: Auto-encoders in their 
traditional formulation do not consider that a signal can be 
seen as a sum of other signals. Convolutional Autoencoders 
use the convolution operator to manipulate this 
examination. They learn to encode the response in a set of 
accessible signals and then reconstruct the input from them, 
modifying the image's geometry or reflectance. 
Sparse Autoencoders: Sparse autoencoders offer us an 
unconventional method for introducing an information 
bottleneck without needing a decrease in the number of 
nodes at our unseen layers. Instead, we will construct our 
loss function such that we punish launches within a layer. 
Deep Autoencoders: The addition of the easy Autoencoder 
is the Deep Autoencoder. The original layer of the Deep 
Autoencoder is applied for first-order includes in the crude 
input. The next layer is used for second-order features 
equivalent to models in the presence of first-order features. 
Deeper layers of the Deep Autoencoder tend to learn even 
higher-order features.  
Contractive Autoencoders: A contractive autoencoder is an 
unproven deep learning technique that helps a neural 
network encode unlabeled training data. This is achieved by 
constructing a loss term that penalizes large derivatives of 
our hidden layer activations concerning the input training 
examples, essentially penalizing instances where a slight 
change in the input leads to a significant difference in the 
encoding space. 
 
5. About the project autoencoders.py  
 
This notebook presents a sparse autoencoder based model 
for intrusion detection. We use the NSL-KDD dataset; this 
dataset is a benchmark for machine learning-based intrusion 
detection. However, it suffers from several inefficiencies 
such as class imbalance, where for instance, in the NSL-KDD 
training dataset, only 0.04% of the samples belong to the u2r 
attack type making it severely underrepresented; the case is 
similar for the r2l and probe attack types whereas the 
majority of attack records are representing the DDOS attack 
type, this fact made it difficult for classifiers to detect these 
underrepresented types resulting in poor accuracy. Another 
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issue is that this dataset is unrealistic. In reality, most traffic 
in a network is benign, and only a small percentage might be 
malicious. At the same time, in the NSL-KDD training set, 
attack samples compose 80% of the entire dataset, making 
the models trained using this dataset ineffective in real-life 
situations. Out Autoencoder based approach attempts to 
overcome these problems. 

7(A) 

7(B) 
Fig -7: (A) and (B) Dependencies 

 

Fig -8: Since the CSV files do not contain a header, we will 
need to assign column names ourselves 

 

 
Fig -9: Number of Rows 

 
Fig -10: Possible outcomes for the data set 

 
 

6. Identifying the labels 
The attack types available in the dataset can be clustered 
into four general attack types 

 Denial of service attacks 
 Remote to Local attacks 
 User to Root 
 Probe attacks 

Our model will use autoencoders to the data for four attack 
types to analyze the results and calculate performance 
metrics for each general attack type. 

 
Fig -11: Identifying the labels 

 
7. Changing into scalar features 
 
For continuous features, we use the MinMaxScaler provided 
by the scikit-learn library; we only allow the scaler to fit the 
training set values, and then we use it to scale both the 
training and testing sets. The minmax_scale_values helper 
function does this task. As for the discrete features, we use a 
one-hot encoding. The encode_text function achieves this 
 

 
Fig -12: Changing into scalar features 

 

8.  EXTRACTING AND NAMING THE VALUES 
 
Next, we remove the values from the pandas data frames as 
Numpy arrays, where: 

1. x holds the elements of the training dataset 
2. y has the categorization of the training dataset to 

one of the five likely values 
3. x_test contains the features of the testing dataset 
4. y_test holds the category of the testing dataset to 

one of the five likely values 
5. y0 holds the category of the training dataset to one 

of two potential labels, 0 for regular traffic or 1 for 
an attack 
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6. y0_test has the category of the testing dataset to one 
of two probable labels, 0 for regular traffic or 1 for 
an attack 

Fig -13: Training the dataset using autoencoders 

 
Fig -14: Prediction 

 
Fig -15: Evaluation 

 
Fig -16: Confusion Matrix 

 

Fig -17: Violin Plot 

 
Conclusion 
 
The one class classifiers we used in the project will be used 
for both training and testing set with which it will segregate 

malicious and good traffic that comes through the network. 
To increase the efficiency of the one class classifiers, we will 
be using autoencoders which uses deep learning neural 
networks in the project. Using both the algorithms, we will 
be increasing the efficiency of the project, and the user can 
use the project for any number of years because the software 
gets updated according to the time, which gives longevity to 
the project 
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