
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1127

Prevention of Real-Time Attacks using One-Class Classification and

Autoencoders using R

Nikhil K1, Boppana Sai Sucheet2

1Students, VIT University, Tamil Nandu, India
---***--

Abstract - This project's main aim is to train our system to
differentiate between lousy network traffic that may contain
some Virus, malware to the system or any other type, and a
standard network by using machine learning. Today's world
uses a very high number of IoT related devices; a survey
(business insider) said that in 2025 the total number of 50
billion devices would exist; as the number increases, the threat
would also be increased in the devices we would be using. This
project presents how one-class classifiers — trained using
gentle data — can be modelled in R to differentiate between
normal and malicious traffic diverted to an IoT device. In this
project, the system is trained using unsupervised / one-class
based modelling approaches. The plan would understand the
problems faced daily, and the training we used would be
helpful for future uses. After the training of the system, the
system is used in the real world to face the real new
challenges, and by learning from the previous mistakes, it
would be grown according to the user's problems and
circumstances

Key Words: (Size 10 & Bold) Key word1, Key word2, Key
word3, etc. (Minimum 5 to 8 key words)…

1. INTRODUCTION

1.1 Purpose

As a group of machines learning enthusiastic, we feel that
our project mainly focuses on solving some of the difficulties
caused by the lack of implementation of the software into the
networking devices that are being made and released into the
market. Moreover, we would like to look into issues like
reaching out to everybody because excellent and working
software is tough to buy. Many people would not purchase it,
making them vulnerable and a target to the malware in the
network. When we look inside the software's working, it is
targeted to a particular issue, and they resolve only that, but
in day-to-day life, there are new types of malware used to get
the information. So having software with a high price and
targeted to one problem is not the key. Training the machines
to avoid trafficking will also take some time, but training
could make much difference in the decision making of a bad
network. Moreover, complete exposure to the malware side
of the network and its types could make the machine fully
ready and also contented data set. So going through these
processes once could be enough because we could save this
information and insert it to the other machines directly as a
plan of action or as a data set initially may save some time.

1.2 Scope

This project uses machine learning to learn through
experience and adapt to defend against new malware in
networks with previous experience. We are also using One-
Class Classifiers to implement machine learning, which will
be very efficient and fast adapting. Since it is a recently
developed algorithm, the software has a long life, yet it can be
modified to the newer version by giving the software update
to the user. Companies that offer this kind of software
currently offer it at a high price, so installing it on every
computer in an organization would be difficult. Reaching
more organizations is not possible as this price would block
them. By this, those companies are in danger of giving the
information away and can fall into serious problems.
However, the upcoming Start-ups and private organizations
or government bodies can install this because it is free
instead of buying software and for every system that would
be present in the office, which may cost a lot, especially to the
start-ups.

2. Detailed description of information security
concepts used in the project
The dataset contains three types of web traffic data — benign
traffic containing 40 395 records, Mirai traffic including
652,100 records and Gafgyt traffic containing 316,650
records. Each record contains 115 features generated by the
publishers of the dataset using raw attributes of network
traffic. The attack activity produced both Gafgyt and Mirai
traffic. The two data sources were combined to construct this
exercise's comprehensive set of malicious data (968,750
records). It can be said that as the end-objective of a model —
in this context — would be to allow nonthreatening traffic to
pass to and from the device and remove transmission and
reception of nasty data, a one-class classifier qualified to
utilize benign data would effectively suit the intent. We
employed 80% of the benign records to build up our model.
This implies that 32, 316 records were used to prepare the
prototype and (40,395 – 32,316) + (652,100 + 316,650) =
976,829 documents were used to assess the performance of
the model.

3. One class classifier

The idea here is to make the model only using mild cases and
then use the educated model to identify new/unknown
traffic instances using statistical and machine-learning
approaches. If the target data is too different, according to
some measurement, it is labelled as out-of-class. To this end
and for an experiment, we will show how to spot-check one-
class classifiers — belonging to different families --in
performance. Two one-class classifiers and their resultant

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1128

families to be used in this exercise are as follows: a. One
Class Support Vector Machine from the usual ML family. b.
Autoencoder from the deep learning family. In this review,
we are implemented a One-Class SVM, and we are planning
to show the Autoencoder from deep learning. In machine
learning, one-class classification (OCC), also known as unary
classification or class-modelling, tries to identify objects of a
specific class amongst all things by primarily learning from a
training set containing only the objects of that class.
However, there exist variants of one-class classifiers where
counterexamples are used to refine the classification
boundary further. One-class characterization calculations
can be utilized for parallel arrangement undertakings with a
seriously slanted class circulation. These techniques can fit
the input examples from the majority class in the training
dataset, then be evaluated on a holdout test dataset.
Although not designed for these problems, one-class
classification algorithms can be practical for imbalanced
classification datasets with few examples of the minority
class or datasets with no coherent structure to separate the
classes that a supervised algorithm could learn. The support
trajectory machine, or SVM, algorithm developed initially for
binary classification can be used for one-class classification.
Whenever utilized for imbalanced characterization, it is wise
to assess the standard SVM and weighted SVM on your
dataset before testing the one-class rendition. When
demonstrating one class, the calculation catches the
thickness of the more significant part class and orders
models on the limits of the thickness work as anomalies. This
alteration of SVM is alluded to as One-Class SVM. This
algorithm computes a binary operation that should catch
areas in input space where the likelihood thickness resides
(its help), that is, a capacity with the end goal that most of
the information will live in the locale where the capacity is
nonzero

Fig -1: Architecture Diagram

Fig -2: Demonstration of the project by R

Fig -3: Demonstration of the project by R

Fig -4: Demonstration of the project by R

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1129

Fig -5: Demonstration of the project by R

4. Auto-encoders

An autoencoder neural network is an unsupervised machine
learning algorithm that applies back-propagation, setting the
target values equal to the inputs. Auto-encoders are used to
reduce the size of our information into a more miniature
representation. Then, if anyone needs the original data, they
can reconstruct it from the compressed data. An
autoencoder aims to learn a model for a data set, typically for
dimensionality reduction, by training the network to ignore
signal noise. They work by compressing the input into a
latent-space representation and reconstructing the output
from this representation.

4.1 Components of Auto-Encodes

Encoder - This part of the network reduces the input into a
latent space illustration. The encoder layer encodes the
stored image as a reduced picture in a diminished
dimension. The compressed image is the altered version of
the original image.
Code - This part of the network represents the compressed
input that is fed to the decoder.
Decoder - This layer interprets the encoded image back to
the original dimension. The decoded image is a lossy
rebuilding of the original image, reconstructed from the
latent space representation.

Fig -6: Working of Auto-Encoder

4.2 Types of Auto-Encoders

Convolution Auto-encoders: Auto-encoders in their
traditional formulation do not consider that a signal can be
seen as a sum of other signals. Convolutional Autoencoders
use the convolution operator to manipulate this
examination. They learn to encode the response in a set of
accessible signals and then reconstruct the input from them,
modifying the image's geometry or reflectance.
Sparse Autoencoders: Sparse autoencoders offer us an
unconventional method for introducing an information
bottleneck without needing a decrease in the number of
nodes at our unseen layers. Instead, we will construct our
loss function such that we punish launches within a layer.
Deep Autoencoders: The addition of the easy Autoencoder
is the Deep Autoencoder. The original layer of the Deep
Autoencoder is applied for first-order includes in the crude
input. The next layer is used for second-order features
equivalent to models in the presence of first-order features.
Deeper layers of the Deep Autoencoder tend to learn even
higher-order features.
Contractive Autoencoders: A contractive autoencoder is an
unproven deep learning technique that helps a neural
network encode unlabeled training data. This is achieved by
constructing a loss term that penalizes large derivatives of
our hidden layer activations concerning the input training
examples, essentially penalizing instances where a slight
change in the input leads to a significant difference in the
encoding space.

5. About the project autoencoders.py

This notebook presents a sparse autoencoder based model
for intrusion detection. We use the NSL-KDD dataset; this
dataset is a benchmark for machine learning-based intrusion
detection. However, it suffers from several inefficiencies
such as class imbalance, where for instance, in the NSL-KDD
training dataset, only 0.04% of the samples belong to the u2r
attack type making it severely underrepresented; the case is
similar for the r2l and probe attack types whereas the
majority of attack records are representing the DDOS attack
type, this fact made it difficult for classifiers to detect these
underrepresented types resulting in poor accuracy. Another

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1130

issue is that this dataset is unrealistic. In reality, most traffic
in a network is benign, and only a small percentage might be
malicious. At the same time, in the NSL-KDD training set,
attack samples compose 80% of the entire dataset, making
the models trained using this dataset ineffective in real-life
situations. Out Autoencoder based approach attempts to
overcome these problems.

7(A)

7(B)
Fig -7: (A) and (B) Dependencies

Fig -8: Since the CSV files do not contain a header, we will
need to assign column names ourselves

Fig -9: Number of Rows

Fig -10: Possible outcomes for the data set

6. Identifying the labels
The attack types available in the dataset can be clustered
into four general attack types

 Denial of service attacks
 Remote to Local attacks
 User to Root
 Probe attacks

Our model will use autoencoders to the data for four attack
types to analyze the results and calculate performance
metrics for each general attack type.

Fig -11: Identifying the labels

7. Changing into scalar features

For continuous features, we use the MinMaxScaler provided
by the scikit-learn library; we only allow the scaler to fit the
training set values, and then we use it to scale both the
training and testing sets. The minmax_scale_values helper
function does this task. As for the discrete features, we use a
one-hot encoding. The encode_text function achieves this

Fig -12: Changing into scalar features

8. EXTRACTING AND NAMING THE VALUES

Next, we remove the values from the pandas data frames as
Numpy arrays, where:

1. x holds the elements of the training dataset
2. y has the categorization of the training dataset to

one of the five likely values
3. x_test contains the features of the testing dataset
4. y_test holds the category of the testing dataset to

one of the five likely values
5. y0 holds the category of the training dataset to one

of two potential labels, 0 for regular traffic or 1 for
an attack

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1131

6. y0_test has the category of the testing dataset to one
of two probable labels, 0 for regular traffic or 1 for
an attack

Fig -13: Training the dataset using autoencoders

Fig -14: Prediction

Fig -15: Evaluation

Fig -16: Confusion Matrix

Fig -17: Violin Plot

Conclusion

The one class classifiers we used in the project will be used
for both training and testing set with which it will segregate

malicious and good traffic that comes through the network.
To increase the efficiency of the one class classifiers, we will
be using autoencoders which uses deep learning neural
networks in the project. Using both the algorithms, we will
be increasing the efficiency of the project, and the user can
use the project for any number of years because the software
gets updated according to the time, which gives longevity to
the project

REFERENCES

[1] Batista G., Prati R.C., Monard, M.C. A study of the

behavior of several methods for balancing machine
learning training data. ACM SIGKDD Explorations
Newsletter, 6(1), 2004, pp. 20-29

[2] I. Cohen, F. G. Cozman, N. Sebe, M. C. Cirelo, T. Huang.
Semi-supervised learning of classifiers: theory,
algorithms and their applications to human-computer
interaction. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(12), 2004, pp. 1553-1567.

[3] L. P. Cordella, A. Limongiello, C. Sansone. Network
Intrusion Detection by a Multi-stage Classification
System. In: Roli, Kittler, and Windeatt (Eds.): Multiple
Classifier Systems, LNCS 3077, Springer, 2004, pp. 324-
333

[4] D. E. Denning. An Intrusion-Detection Model. IEEE
Transactions on Software Engineering, 13 (2), 1987, pages
222-232

[5] H. Debar, M. Becker, D. Siboni. A Neural Network
Component for an Intrusion Detection System.
Proc. of the IEEE Symp. on Research in Security and
Privacy, Oakland, CA, USA, 1992, pp. 240-250

[6] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
(2nd Edition). Wiley-Interscience, 2000

[7] C. Elkan. Results of the KDD'99 Classifier Learning. ACM
SIGKDD Explorations 1, 2000, pp. 63-64

[8] G. Giacinto, F. Roli, L. Didaci. A Modular Multiple
Classifier System for the Detection of Intrusions in
Computer Networks. 4th Int. Workshop on Multiple
Classifier Systems (MCS 2003), Guildford, United
Kingdom, June 11-13 2003, T. Windeatt and F. Roli Eds.,
LNCS 2709, pp. 346-355

[9] G. Giacinto, F. Roli, L. Didaci. Fusion of multiple
classifiers for intrusion detection in computer networks.

[10] Pattern Recognition Letters, 24(12), 2003, pp. 1795-
1803.

[11] A. K. Jain, R. C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, 1988.

[12] H. Javits, A. Valdes. The NIDES statistical component:
Description and justification. SRI Anual Report A010,
SRI International, Computer Science Laboratory, March
1993

[13] J. Kittler, M. Hatef, R. P. W. Duin, J. Matas. On Combining
Classifiers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(3), 1998, pp. 226-229

