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Abstract - Concrete gravity dams are important infrastructure assets in many countries, the failure of which may lead to 
catastrophic consequences with major social and economic impacts. The need to evaluate the safety of existing concrete gravity 
dams in seismically active regions is very important.  
In this paper, the reliability analysis of a hypothetical dam section is done for various IS Load Combinations, different water levels 
and drainage conditions using First order second moment method, Rosenbleuth point estimate method and Advanced first order 
second moment method  and the results are compared with the results obtained by Monte Carlo Simulation method. 
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1. INTRODUCTION  
 
Recent publication of dam safety guidelines and research around the world reflect a growing concern on the seismic 
safety of hydroelectric and flood control gravity dams and other similar water retaining gravity structures built prior 
to 1950’s. Although probable maximum flood (PMF) is a critical lateral load in the sliding stability of concrete gravity 
dams, by and large horizontal and vertical accelerations due to maximum credible earthquake (MCE) have become 
the main factor in the stability evaluation of concrete gravity dam structures. A typical medium to large size concrete 
gravity dam comprises various service or relief structures that include a number of expansion joints. By controlling 
temperature ingredients, expansion joints are mainly provided to minimize cracking of concrete mass due to heat of 
hydration of concrete during and immediately after construction of dams. Inclusion of expansion joints results in the 
creation of several rigid concrete monoliths or blocks along the length of the dam. During a strong seismic event in 
the upstream-downstream direction (i.e. along the centerline of river), concrete blocks tend to slide at the base.  

2. Study Area 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Hypothetical dam section 
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The Hypothetical dam to be analyzed in this thesis is taken from the theme C of the eleventh ICOLD benchmark workshop on 
numerical analysis of dams (3IWRDD ICOLD, 2011). The problem in the benchmark workshop aims at analyzing the dam with a 
2D model. Total height of the dam is 80 m with drain axis 10 m from the upstream end. The other dimensions are given in Figure 
3.1. The objective of the ICOLD proposal was to benchmark numerical and analytical methods for the evaluation of the maximum 
sustainable reservoir level before dam collapsing and the evaluation of the uplift pressure distributions acting along the 
dambase. 
Methodolgy:- 
3. Random Variables 
The variables are classified as deterministic or random. In the present thesis, the random variables considered are friction angle 
‘φ’ and cohesion ‘c’ along the dam-foundation interface. Probability density functions are determined for friction and cohesion 
and the probability distribution is assumed normal. The friction angle is defined by a normal probability function with a mean 
value μ f and standard deviation σ f . Similarly, cohesion is normally distributed with a mean μ c and standard deviation σ c. 

Table 3.1 : Data for friction and cohesion at the interface (3IWRDD ICOLD, 2011) 
Sample Friction angle ’φ’ in degrees Cohesion ’c’ (MPa) 

1 45 0.5 

2 37 0.3 

3 46 0.3 

4 45 0.7 

5 49 0.8 

6 53 0.2 

7 54 0.6 

8 45 0.0 

9 49 0.1 

10 60 0.2 

11 63 0.2 

12 62 0.4 

13 60 0.7 

14 56 0.1 

15 62 0.4 

 
 

Table 3.2: Mean and standard deviation values used for friction and cohesion 
 

Normal Probability Distribution Friction  Angle (φ) Degrees Cohesion (c) Mpa 

Mean 52.40 0.3367 

Standard Deviation 7.989 0.2468 

 

3.2.1 Deterministic variables 

The considered deterministic variables are 

1. Concrete density (kN/m3 ) 
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2. Water density (kN/m3 ) 

3. Water Pressure ‘P’ (kN/m2 ) 

4. Self-weight of the dam ‘W’ (kN/m) 

5. Horizontal load due to water pressure acting on the upstream face of the dam ‘H’ (kN/m) 

6. Uplift load acting on the base of the dam ‘U’ (kN/m) 

7. Tensile stress ‘σ’ (kN/m2 ) 

The Stability Analysis is carried out by deterministic method for the following load cases: 

1. Load combination A: (Empty reservoir condition) : When the reservoir is empty, the force acting on the dam profile will be due 
to the self weight only, which acts at inner middle third. Other forces such as water pressure and uplift will be zero. 

2. Load combination B (normal operating conditions): Full reservoir elevation, normal dry weather tail water, normal uplift, ice 
and silt (if applicable). Here for Indian conditions the silt load is neglected  

3. Load combination C: (Flood discharge condition) - Reservoir at maximum flood pool elevation all gates open, tailwater at flood 
elevation, normal uplift, and silt (if applicable)  

4. Load combination D: Combination of A and earthquake  

5. Load combination E: Combination B, with earthquake but no ice  

6. Load combination F: Combination C, but with extreme uplift, assuming the drainage holes to be Inoperative  

7. Load combination G: Combination E but with extreme uplift (drains inoperative) 

3.4 TAYLOR’S SERIES METHOD OF RELIABILITY ANALYSIS 

Performance function M for a particular water level is defined as: 

                                                                                                                      ------ 3.1 

Where R is the sum of stabilizing forces and H is the sum of horizontal forces. The methodology used for calculating the 
probability of failure for the two given cases is presented below. The stepwise procedure below is in detail the same as 
summarized before in section 2.5.2 according to USACE (Duncan MJ, 1999). 

R and H vary with the change in water level ‘h’. With different drain conditions, the parameter R and H have varying values 
depending on the height and the uplift pressure but the methodology remains the same for both drainage conditions and 
different water levels. The values of R and H can be given as described in eq. 3.2 and eq. 3.3 

R = (W-U)·Tan(φ) + A.c            ------ 3.2 

H=0.5·ϼ·g·h2              ------ 3.3 

Mean and standard deviations for both ‘φ’ and ‘c’ are 

Friction angle ‘φ’: mean = μf standard deviation = σf 

Cohesion ‘c’: mean = μc standard deviation = σf 

The performance function M can be evaluated by varying the mean value of each variable according to its standard deviation. It is 
done by computing the performance function M with each parameter increased by one standard deviation and then decreased by 
one standard deviation from its most likely values as described previously in chapter 2. It will generate different values of M, i.e. 
M1, M2, M3, and M4 as shown in eq. 3.4 to eq. 3.7 where M1 and M2 



               International Research Journal of Engineering and Technology (IRJET)                 e-ISSN: 2395-0056 

                Volume: 08 Issue: 11 | Nov 2021                 www.irjet.net                                                 p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 1068 

belongs to the friction ‘φ’ and M3, and M4 belongs to the cohesion ‘c’. 

M1 (μf + σf, μc) = (W-U)·Tan·(μf + σf) + A·μc       ------ 3.4 

M2 (μf - σf, μc) = (W-U)·Tan (μf - σf) + A·μc       ------- 3.5 

M3 (μf, μc + σf) = (W-U)·Tan (μf) + A·(μc + σf)       ------- 3.6 

M4(μf,μc-σf)=(W-U)·Tan(μf)+A·(μc-σf)        -------- 3.7 

3.5 ROSENBLEUTH POINT ESTIMATE METHOD: 

In engineering, for conventional slope structure stability analysis, we can build the following 

state function according to its structure, the failure mechanism and the stress condition:  

     ------- 3.8 

Where R(x1,x2....xn) means Sliding resistance force or sliding resistance torque S(x1,x2....xn) means Down force or Downturn 
torque 

When the distribution function of the state variables is unknown, the variation does not need to be considered, we can choose 2 
data point symmetrically in the interval (xmin,xmax) . 

         ------- 3.9 

If there are n state variables, there are 2n values, all possible combinations of values maybe 

2n. For this combination, according to the equation of state, we can obtain 2n state functions, so 

there are 2n stability coefficient (safety factor). 

If the n state variables are independent, the probability of each combination is equal, so the 

average of is: 

         ------- 3.10 

If the n state variables are Related, the probability of each combination is equal, so the average of is: 

    ------- 3.11 

          ------- 3.12 
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3.6 THE HASOFER-LIND RELIABILITY INDEX 

Hasofer proposed the linearization about a point which lies on the failure surface (Hasofer-Lind, 1974). The point is known as 
the design point or most probable failure point. The Hasofer-Lind reliability index β HL computation is based on the 
transformation of the limit state surface into the space of standardized normal variates (Kisse, 2011) by defining the set of 
reduced variables Z 1 , 

Z 2 ,....Z n using 

X’ i = (X i - μ Xi ) / σ Xi                                                                                                         ..... (3.13) 

Where μ Xi and σ Xi are the mean and standard deviation of variable X i . The limit state equation 

g(X) = R(X) – S(X) is also transformed to standard space as shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 : Illustration of reliability index β in the plane (Burcharth, 1997 from Kisse 2011). 
The reliability index is the distance from the origin of reduced variables to the nearest point D on the failure surface 

as shown in Figure 2.6. The point D is called the design point. Hasofer-Lind suggested linearizing the limit state 

function in this ‘design point’ in standard normal space (Hasofer-Lind, 1974). In standard normal space each variable 

has zero mean and unit standard deviation, thus the Hasofer-Lind safety index is defined as: 
 

                                                                 ..... (3.14) 
 

subjected to g(Z) = 0 
, where Z i represents the coordinates of any point on the limit state surface. The point on the  failure surface at 

which Z has minimum magnitude is the design point. Equation 3.2 can further be elaborated as 
 

                                                               ..... (3.15) 
 

 

Where X is a vector representing the set of random variables X i , μ i are the mean values, R is the correlation matrix, 

σ i is the standard deviation and F is the failure domain. According to Melchers (1999), the relationship between the 
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design point D and β can be established as follows. From geometry of surfaces the outward normal vector to a 

hyperplane given by g(Z) = 0 
 has components given by 

                                                                                                                          .                                                                                                              

.... (3.16) 
 

the total length of the outward normal is 
 

                        ..... (3.17) 
 

direction cosines α i of the unit outward normal are 
 

                                                                                                                                                     .                                                                                                                  

.... (3.18) 
 

where α i is also known as sensitivity factor or a relative measure of the sensitivity of the safety index β. Sensitivity 

factor indicates the importance on Hasofer-Lind reliability index of the value of parameters used to define the 

random vector X. In reliability analysis, a very small value of α i might end up with an assumption of considering its 

corresponding variable as a deterministic variable rather than a random variable, thus simplifying the probabilistic 

analysis (Melchers,1999). A higher value of α i implies more sensitivity of β to the standard normal variate. If α i is 

known, then the coordinates of the design point can be given in terms of the reliability index as 
D = Z i = - α i β               ..... (3.19) 
The Hasofer-Lind index is commonly used in reliability analysis but somewhat advance computer software is needed 

for its computation. The greater the value of β the lower is the risk of failure but this will also increase the cost of the 

structure. 
3.7 LEVEL 3 RELIABILITY METHOD (MONTE CARLO SIMULATION) 
3.7.1 Introduction 
Monte Carlo simulation is one of the techniques of the Level III methods to estimate the  probability of failure. Level III methods 
are considered more accurate than level I and level II methods as they compute the exact probability of failure of the whole 
structural system (Bjerager, 1989). Numerical integration and Monte Carlo simulation are two examples of these methods. 
3.7.2 Basis of simulation 
The sampling selects the values of uncertain variables randomly according to their probability distribution functions (Hwang 
and Lee, 2008). What this simulation actually does is it allows a random number generator to select any value in a given range. If 
it’s a normal distribution the values near the mean will be more frequently generated as compared to the values at the extreme 
as can be seen in Figure 3.4 (Hwang and Lee, 2008). For a simple approach in structural reliability analysis, the sampling 
includes each random variable randomly say X i to a given and the limit state function M(x) = 0 is then checked (Melchers, 1999). 
As sample value described by Melchers if M(x) 0, then the structure is considered as failed. 
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Figure 3.2 : Monte Carlo sampling (Lee and Hwang, 2008) 
The basis of the simulation techniques can be well defined by rewriting the equation of probability of failure by 

means of an indicator function as shown in equation 3.8. 
 

                                                          .... (3.20) 
Where 
  I[M(x)] ≤ 0 is an indicator function. Its value is equal to 1 if M(x) ≤ 0 other wise it is 0 
 (Ang and Tang WH 2006, Melchers 1999). It is also known that if the value of M(x) is less than zero, it indicates 

failure. The experiment is repeated several times with randomly chosen vector x or xi . Now if there are N 

realizations of vector X, i.e. i , i=1,2...,N then the probability of failure as an unbiased estimator can be expressed as 

(Melchers 1999, Alfredo and Tang WH 2006) 
 

 

                                                                            ..... (3.21) 
 

 

Monte Carlo simulation technique mostly revolves around the application of the above equation. Now let n f be the 

number of cycles for which M(x) is less than 0 and N being the total number of simulation cycles then the probability 

of failure is estimated through (Melchers, 1999): 
 

                                                                                                                                        .                                                                                                                    

.... (3.22) 
The value estimated from the above equation may be considered as a sample of the expected value of the probability 

of failure. The equation actually takes part in the simulation, based on a concept that a large number of realizations of 

basic random variables X, i.e. i , i=1,2...,N are generated or simulated and for each generated value j it makes sure 

whether the limit state function taken in j i positive or not. If it is not positive, the simulations are considered under n 

f and after N simulations the probability of failure is estimated as shown in eq. (3.10).It is clear from the above 

explanation, and is also mentioned by Melchers, that the method used in Monte Carlo simulation actually creates a 
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game of chance from the known probabilistic properties so that to solve the problem several times over and over 

again to give the required results. If N approaches infinity, then the failure probability becomes exact. For that case, 

the simulations are usually costly and of course the uncertainties that might take place, cannot be neglected. So a 

large number of simulations are required to achieve a better estimate. 
4.0 RESULTS AND DISCUSSIONS 
4.1 Probability of failure using Taylor’s series approximation 

Table 4.1 : First order second moment method for sliding failure for different IS load combinations 

Load Combination β Probability of failure pf 

B 2.17 0.015 

C 2.29 0.015 

D 3.41 0.003 

E 2.17 0.0192 

F 1.935 0.0224 

G 1.824 0.0314 

 

Table 4.2: Rosenbleuth point estimate method for sliding failure for different IS load combinations 

Load 

Combination 

β Probability of failure pf 

B 2.10 0.0179 

C 2.44 0.0073 

D 3.57 0.0002 

E 2.313 0.0103 

F 2.00 0.0228 

G 1.964 0.025 

 

Table 4.3: Hasofer Lind  method for sliding failure for different IS load combinations 

Load Combination β Probability of failure pf 

B 2.195 0.0143 

C 2.56 0.0052 

D 3.735 0.0002 

E 2.475 0.0067 

F 2.135 0.0163 

G 1.975 0.0242 

 

Table 4.4: Results of First order Second moment method for sliding failure Different Water levels – Drains 

Operative and No seismic Load 

Water Level H 

in m 

β % contribution of 

φ 

% contribution of 

c 

Probability of failure 

pf 

75 2.433 63.86 36.14 0.0075 

76 2.342 63.87 36.13 0.0096 
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77 2.282 63.84 36.16 0.013 

78 2.216 63.9 36.1 0.0136 

79 2.115 63.7 36.3 0.0174 

80 2.117 63.8 36.2 0.017 

 

Table 4.5: Results of First order Second moment method for sliding failure for Different waterlevels with Seismic 

Loads – Drainage gallery Operative 

Water Level H in 

m 

β % contribution of 

φ 

% contribution of 

c 

Probability of failure 

pf 

75 2.066 78.09 21.91 0.0197 

76 1.963 72.5 27.5 0.0281 

77 1.89 70.08 29.92 0.0262 

78 1.83 68.69 31.31 0.025 

79 1.77 65.8 34.2 0.0307 

80 1.727 63 37 0.0427 

Table 4.6:  Results of First order Second moment method for sliding failure for different water levels – Drainage 

gallery Inoperative 

Water Level H 

in m 

β % contribution of 

φ 

% contribution of 

c 

Probability of failure 

pf 

75 2.166 45.63 54.37 0.0154 

76 2.098 45.6 54.4 0.0183 

77 1.974 45.27 54.73 0.0244 

78 1.875 45.65 54.35 0.0307 

79 1.879 45.38 54.62 0.0301 

80 1.801 45.59 54.41 0.0351 

Table 4.7: Results of Rosenbleuth point estimate method for sliding failure for Different waterlevels Drains 

operative No Seismic load 

Water Level H 

in m 

β Probability of failure 

pf 

75 1.422 0.0778 

76 1.375 0.0838 

77 2.204 0.0125 

78 1.305 0.0885 

79 1.125 0.1297 

80 1.206 0.1038 

Table 4.8: Results of Rosenbleuth point estimate method for sliding failure for Different waterlevels with Seismic 

Loads – Drainage gallery Operative 

Water Level H in m β Probability of failure 

pf 

75 1.275 0.1151 
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76 1.24 0.1401 

77 1.158 0.1379 

78 1.13 0.1357 

79 1.125 0.1539 

80 1.095 0.1515 

Table 4.9: Results of Rosenbleuth point estimate method for sliding failure for different water levels – Drainage 

gallery Inoperative 

Water Level H in m β Probability of failure 
pf 

75 1.105 0.1020 
76 1.047 0.1492 
77 1.035 0.1515 
78 1.08 0.1401 
79 0.975 0.1650 
80 0.99 0.1685 

 

Advanced First order Second Moment Method or Hasofer-Lind Method  

The Hasofer-Lind method is applied for the different water levels for two random variables, friction angle and 

cohesion. The values of reliability index is summarised below. 

Table 4.10: Results of Hasofer Lind method for  sliding failure for Different Water levels – Drains Operative and No 

seismic Load 

Water Level H in m β Probability of failure 

pf 

75 2.85 0.0022 

76 2.685 0.0037 

77 2.508 0.0049 

78 2.657 0.004 

79 2.598 0.0047 

80 2.605 0.004 

Table 4.11: Results of Hasofer Lind method for sliding failure for Different waterlevels with Seismic Loads – 

Drainage gallery Operative 

Water Level H in m β Probability of failure 

pf 

75 2.865 0.0060 

76 2.63 0.0075 

77 2.52 0.0107 

78 2.596 0.0096 

79 2.435 0.0136 

80 2.457 0.0122 
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Table 4.12: Results of Hasofer Lind method for sliding failure for different water levels – Drainage gallery 

Inoperative 

Water Level H 

in m 

β Probability of failure 

pf 

75 2.465 0.0021 

76 1.987 0.0235 

77 2.35 0.0094 

78 2.297 0.0107 

79 2.195 0.0141 

80 2.205 0.0122 

 

5. CONCLUSIONS 
 

All the reliability methods produce fair results when compared to Monte carlo simulation method. 

The Probability of failure is highest in case of Load Combination G which is the normal reservoir level with Extreme 
uplift and drains Inoperative condition in all methods. 

It is also noted that the reliability index increases as the water levels in the dam increases. 
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