
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 29

Performance Optimization for Top-K String Similarity Search Using

Inverted Index

Ibrahim Musa Conteh1, Gibril Njai2

1-2Department of Information and Communication Technology, Faculty of Engineering and Technology, Ernest Bai
Koroma University of Science and Technology, Magburaka, Sierra Leone

--***---

Abstract – With the rapid growth in internet technologies,
the optimization of web search and information retrieval in a
large dataset repository is of a serious challenge. The filter-
and-verify framework for non-candidates pruning with some
lower bounds of edit distance has been widely used. However,
this framework is generally inefficient due to their breadth
first search algorithm that results in repeated computations
and it answers are based on approximations. To solve this
problem, we proposed a weight-less top-k fast search
algorithm that largely avoids repeated computations and can
achieve better results regardless of the scales of similarity
search. The efficiency and effectiveness of the proposed
algorithm are empirically demonstrated with Java and
Microsoft excel using real-world datasets as simulated data.
Moreover, we compare our algorithm with the filtering
methods to verify its efficiency and early termination of a
query when the results were found using the same device
specifications. Experimental results show that our approach
performs 2 times faster than traditional methods with more
than 97% of the results returned.

Key Words: - Appgram, Apriori, Flamingo, HS-top-K, WL-
search, string similarity search; top-k.

1. INTRODUCTION

As the demand for data increases, particularly in this era of

big data, the optimization of web search and information
retrieval in a large dataset [1] repository becomes serious
research challenge [2]. In the real-world, string similarity
search have many applications such as spell checking, web
search [3], data cleaning, DNA sequence search, and
plagiarism detection. Given a set of strings and a query,
string similarity search aims to find all strings from the
string set that are similar to the query. The more fact you
have from the data the more self-assured you will be in
taking a decision. We used data mining techniques to know
the hidden information by analyzing the huge and complex
dataset at hand. There are many metrics to quantify between
strings like Jaccard, Dice, cosine and edit distance [3][4]. To
tolerate typographical error, the edit distance is the most
widely used metric [5] In this paper we consider the later to
quantify string similarity.

In string similarity searching studies, authors in [6][7]
techniques mostly emphasize efficient filter performance
with an effective and efficient indexing structure. The

authors in [8][9] studies threshold-based similarity search
problem using filter-verification model. Such method
requires more computational time and hence very expensive
to perform.

Chen Li et al in [10] studied ScanCount, DivideSkip, and
MergeSkip algorithms for string similarity. Their focus was
on how to identify similar strings efficiently in a set of strings
given a query string. Again, recent studies on top-k similarity
search in [11][12] are inefficient for threshold-based search
because they cannot make full use of the given threshold to
do pruning. These existing methods are efficient either for
threshold- based search or for top-k search and most of them
can’t efficiently support both of the two problems. Thus, the
need for an optimized framework to efficiently support the
two variants of string similarity search with inverted index.

To address this problem, we propose an optimization
scheme for top-K similarity search with inverted index. We
defined n-grams as possible finite number of strings. The
more candidates are fetched, the more accurate our
algorithm will be. We also consider the trade-off between the
query performance and the accuracy of the answers. The
experimental study shows that our algorithm can achieve the
best performance compared with other algorithms with very
high accuracy.

The rest of the paper is organized as follows. In section II,

we presented our algorithms and how its implemented.
Preliminaries in section III. Framework description in
section IV. Experimental results and analysis in section V. We
conclude in section VI.

2. ALGORITHM AND IMPLEMENTATION

In this paper, like most algorithms dealing with the string
similarity search problem, a filter-and-verify framework was
also used. We adopt the index structure and propose a light-
weight top-k search algorithm. It was implemented in
Windows 10 operating system with 64 bits computer. The
processor used: Intel(R) Core (TM) i5 – 3337U @ 1.80GHz,
1.80GHz with 4 GB RAM. We evaluated this algorithm by
varying K-value and varying the datasets as well. We
compared our algorithm performance “Weight-Less top-k fast
search”, with different algorithms like Flamingo, Apriori, HS-
Top-K, and Appgram.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 30

3. METHODOLOGIES

We integrated an index structure that has a one-level
inverted index, and design a faster search algorithm call
Weight-Less top-k fast search algorithm. Here, these
technologies were used: N-Gram technology, indexing

technology, Filtering, and Verification technology and Edit
distance

3.1 The N-Grams and Inverted Index

N-grams scenario in this paper, if you are given S as a
query string and n is a positive integer, we obtained a set of
substrings by sliding window of size n over string S starting
from the first component in the string to the latter
component in the string. which is the n-gram set of string S,
and it is represented by;

Gn (s) For string “Conteh”,

its 3-gram set is G3 (Conteh) = {” con”, “ont”, “nte”, “teh”}.

The most essential aspect of using this n-gram based
inverted index method was for the use of the inverted lists to
find all candidate strings that have a certain number of same
n-grams with the given query string. We constructed our
inverted index due to n-gram, and assign a key to each of the
n-grams and have the string that comprises the n-gram into
the equivalent inverted list. Algorithm 2 is responsible to
decompose the raw data and the issued query from the user
into grams. These decomposed 5-grams will be stored in the
index for easy retrieval of the inverted list. If the length of the
input has fewer or same gram length (less or equal 5 gram) in
this case, there was no need for the decomposition of the
query and we will just return the input as a gram. When the
user is trying to retrieve an answer without issuing a query,
this will throw an error “the input is empty” to notify the user
must enter a query before searching.

Algorithm 2: N-Gram processing operations

Line 1: public static List<String>
getNGram(String input) throws Exception {

if (input == null

throw new Exception ("The input is empty");

List<String> indexes = new ArrayList<>();

if (input.length() <= GRAM)

indexes.add(input);

return indexes;

for (int i = 0; i < input.length() - GRAM + 1; i++)

StringBuilder buffer = new StringBuilder ();

for (int j = i; j < GRAM + i; j++)

buffer.append(input.charAt(j));

indexes.add(buffer.toString());

return indexes;

 Algorithm 1: Weight-Less Top-K Fast Search String
Similarity Algorithm

 start

Declare input Variable: Q = Query; Tds = Training
Dataset; K = Number of result

Declare output Variable: R =Top-K Result

Get Tds from source

Decompose strings to N-Gram

Building of inverted index for Tds

Store the index (Key & values)

Repeat step 5 for each incoming Tds

Get Q from user

Decompose Q; by Repeat step 3

Change Q to N-Gram

Use Gn(q) to get N-Gram set

Using the key for generating the inverted list

Stop

Assigning K Sequence

Assigning max-heap H and a threshold (t) using
first visited K sequence

Generate an inverted list

Combined the retrieved list

Sort by F for both exact & approximate N-Gram list

Count F for each string Tds

For each unprocessed string s in Tds

Select candidate if F >= Lower Bound (t)

If F[s]>= t then

Calculate ED (q, s)

If ED (q, s) < (t) then

Update H and t

Stop

Rank result by similarity to Q

Output Top-K result

Stop

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 31

3.2 Index and Compression Technique

We used one level inverted index and introduced some
ideas of Wang et al. in [13] that used a two-level inverted
index. For the recovery of the top-k string, we store with the
string id’s, key, and each word’s frequency in the document
will be calculated and store in a sorted form which could aid
in improving searching performance. We constructed this
Inverted Index through the n-gram set of our data, preparing
every n-gram as the key and place the string that contains the
specific n-gram into a matching inverted list, when the user
issue the query, likewise, this query will also decompose
using the same principle. This was used to recover the
matching inverted list from the index according to exact n-
grams.

Different from the ordinary inverted index, after getting
the inverted list from the index, you could consider either
exact n-grams or using the approximate n-grams for result
retrieval. Therefore, to know which string comprises the
certain n-gram (substring), we need just to acquire the
inverted list by its key. Example, given four strings
“approximant”, “approximate”, “Approximation”, and
“Approximately” we can update the inverted index by adding
their information into the inverted index and get a simple one
when we want to add information of other strings. We just
have to look for the corresponding n-gram and update this
information to the inverted list.

Compression technique helps to improve the searching
performance through an algorithm that codes information.
We used compression also for keeping more information in
cache memory. Their practicality determines their power to
exploit newly or regularly used data.

3.3 Edit Distance

Edit distance was used as the similarity function. The

gram length used was 5 for decomposing datasets. This is a

technology used to measure the dissimilarities between

strings S1 and S2 denoted by ED (S1, S2), using Substitution,

Insertion, and Delete (SID) operations. This is applicable in

natural language, detection [8][14] to quantify the similarity

and spelling correction in both data and the query, by

selecting the word with less edit distance. This technique

was implemented for the selection of the most appropriate

candidate from the retrieved candidate strings, which are

more similar to the issued query for result processing. In this

process, the retrieved candidate that satisfied the threshold

condition will be considered in the selection of the top-k

result. Algorithm 3 show how we implemented edit distance

operation in this paper. It is responsible to compute the

similarities between the input and the existing grams.

Algorithm 3: Edit Distance processing operations

Line 1 private int similarity(String query, String word)

return GRAM - distance(query, word);

private float similarity(String word)

int distance = distance(query, word);

return (2f * distance) / (query.length() + word.length());

public Object2FloatMap<Pair> call() throws Exception

return getCandidates();

3.4 Query Result Ranking

The ranking was done for both exact match and non-exact
match (similarities ranking) with edit distance techniques
between the datasets and the issued query. The candidates
were ranked by their exactness or similarity and only top-k
results were returned. This algorithm will continue to search
the data until it fetches all the top-k result [15], it is
terminated immediately and present the fetched result.

There are certain word operations to perform between
the datasets and the query. There are other sets of queries
like the Boolean query, a function that assigns a 0 number to
represent non-matching and number 1 represents matching,
but this is not the case in this study. The simple approach is to
total the term frequency of the selected candidates, the one
with the highest frequency will be ranked higher for easy
selection of the top-k. Algorithm 4 is responsible for ranking
the selected candidate base on similarities, using their ids. We
created a map that responsible for holding the ids and their
similarities. Moreover, the k-value there is the top-k
outputted result and it was returned in a ranked manner.
Were the candidate with higher similarities will be at the top
of the ranking.

Algorithm 4: Ranking Process

public static List<Pair>

sortBySimilarity(Object2FloatMap<Pair> map,

int kValue)

{

int size = map.size();

return map.object2FloatEntrySet().stream()

sorted(comparing(Map.Entry::getValue))
.map(Map.Entry::getKey).collect(toList()).subList(0,(size
> kValue ? kValue : size));

}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 32

4. FRAMEWORK DESCRIPTION

We divide the filter-and-verify framework into two

processes according to their different functions: filtering

process and verification process. After building the inverted

index for dataset S. Given a query string q, we can

decompose it and obtain an n-gram set in which n, is the

same as the setting for the inverted index. Thus, according to

the n-gram set, we can retrieve several inverted lists and

many filter techniques [16] can be applied to prepare the

candidate set; in the verification process, all the candidates

will be verified and the n most similar strings will be

returned as the top-k results.

In the Gram-based method, we considered the following
three key steps:

1. The Indexing step: We assemble an inverted index
from the string set, which takes all the grams to be
the keys and the strings that comprise the gram as
the values

2. Candidate generation step: We inspect the inverted
index through the grams in the issued query string
and the interim counts the accuracy of the strings in
the chosen lists. We could select a string to become a
candidate if its appearances are above or equal to
the lower bound. Length filter is one of the filter
techniques used in this step for reducing the number
of candidates.

3. Verification step: we calculate the exact distance
between the candidate and the issued query, we
added a candidate to the final result only if the
distance is less than or equal to the given threshold
(t) denoted as ED (s, q) <= t

5. EXPERIMENTAL STUDY

In this section, we conduct an extensive set of experiments to
evaluate the efficiency of our algorithms and compare with
other methods.

5.1 Experiment Setup

We used three real datasets in our experiments: eBay,

Author, IMDB, which are widely used in previous studies
[11]. Author contains short strings, Query Log contains
medium-length strings, and DBLP contains long strings. Our
first experiment was done using different N values, while the
second experiment was to compare our algorithm with
others like Flamingo, HS-TopK, Appgram and Appriori.
During the experimental process, we selected the average
query time and the average maximum edit distance for

evaluation measures, and execute all different
algorithms at these K-values: 5, 10, 20, 30, 40, 50,

and 60 on all our three datasets used in this study. We
presented the excremental results of our proposed methods.
All the algorithms were implemented in Java and MS excel on
a Windows 10 operating system with 64 bits . The processor
used: Intel(R) Core (TM) i5 – 3337U @ 1.80GHz, 1.80GHz
with 4 GB RAM. We implemented our algorithm in the
following datasets as shown in Table I.

Table – 1: Summary Dataset

Dataset Records Size Format

eBay 258,589 72.9 MB Csv

Author 194,788 47.8 MB Csv

IMDB 153,428 32 MB csv

5.2 Performance Evaluation

1. Evaluation at different N-Value: We evaluate the

performance of N-Value on the three datasets. The

experimental analysis in Chart 1-3 is shows a clear

performance of different algorithms in different candidate

size (N value) on all three used datasets. In this, we differ the

size of N as 1000, 2000, 4000, 8000, 16000, 32000 and

64000 while setting the K value as 5, 10, 20, 30, 40, 50 and

60 with query time in milliseconds (ms). Thus N-Value will

terminate within a less ms.

2. Comparison on Different Datasets: We compared our

WL-Search algorithm with other algorithms as shown in

Chart 4-6 by varying different edit distance metric on the

three datasets. Chart 4-6 shows an explicit performance

comparison between five algorithms and our WL-search

algorithm including four others, with an N value of 16000 for

all three different datasets. Moreover, varying the K value as

5, 10, 20, 30, 40, 50, and 60. Results shows our algorithms

returns search result in less computational time.

3. Verification and Filtration Time: In Chart 7-9, we show

results of the comparison of records of WL-Search and

Appgram algorithms in their verification and filtration time

at different K-Value. This is to demonstrate the time each of

these two best algorithms took the verification and filtration

in a bar chat representation. The analysis was done in all the

three different datasets and each diagram contains four

different colored bars, except the eBay dataset that has three

different bars, which means no filtration time for Appgram.

The blue and brown represent our WL-Search.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 33

4. The Top- K Results: The top-60 result was retrieved in the

eBay dataset within 401 milliseconds (ms). To obtain this

time, we issued many queries with a threshold of 3. We also

increased the size of the records in each dataset. Chart 7 is

showing the query time of the Weight-Less top-k fast search

algorithm took to execute the top-60 results. The query

“legend” was issued in the eBay dataset for the top 60.

Chart -1: Evaluation on eBay dataset – K-Value N-Value

Chart - 2: Evaluation on eBay dataset – K-Value N-Value

Chart - 3: Evaluation on Author Bay dataset – K-Value N-V

Chart - 4: Algorithms Comparison on eBay Datasets

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 34

Chart -5: Algorithms Comparison on eBay Datasets

Chart - 6: Algorithms Comparison on eBay Datasets

Chart -7: Verification and Filtration Time on eBay dataset

Chart - 8. Verification and Filtration Time on IMDB

dataset

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 08 Issue: 11 | Nov 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 35

Chart – 9: Verification and Filtration Time on Author

dataset

TABLE:2 ACCURACY OF WL-SEARCH ALGORITHM

6. CONCLUSIONS

In this paper, we studied the problem of string similarity
search. We find the top-k string similarity search problem
using edit distance. Although existing approaches usually try
to reduce the number of candidates by building index
structure and using a powerful filter with a high time
expense to optimize the query performance, we tackle this
problem by proposing a new weight-less approach which
mainly decreases the number of candidates. By choosing a
proper N and verifying the string which has a high
frequency, we got good performance both on efficiency and
accuracy of our algorithm. The results of our algorithm are
ranked according to a defined similarities function. We then
integrate current filtering methods with the algorithms, and
finally design our algorithm for early termination when the
results were found. The algorithm has proven to have higher
accuracy and best performance in string searching compare
to other methods.

7. REFERENCES

[1] A. Behm, C. Li, and M. J. Carey, “Answering

approximate string queries on large data sets using
external memory,” in ICDE, 2011, pp. 888–899.

[2] Duan, W. Zhai, and C. Cheng, “A Spatial Grid Index
Based on Inverted Index and Its Query Method 1,” no.
2, pp. 6189–61922017.

[3] Alberga C N. String similarity and misspellings J.
Communications of the ACM, 1967, 10(5): 302-313.

[4] K. Balhaf, M. A. Alsmirat, M. Al-ayyoub, Y. Jararweh,
and M. A. Shehab, “Accelerating Levenshtein and
Damerau Edit Distance Algorithms Using GPU with
Unified Memory,” pp. 1–5, 2017

[5] S. U. G. Darsan, “Event extraction & Image retrieval for
Story Board Generation using GLCM,” 2017.

[6] J. Lu, C. Lin, W. Wang, C. Li, H. Wang String similarity
measures and joins with synonyms Proceedings of the
2013 ACM SIGMOD International Conference on
Management of Data, ACM (2013), pp. 373-384

[7] W.H. Gomaa, A.A. Fahmy A survey of text similarity
approaches Int. J. Comput. Appl., 68 (13) (2013),
pp. 13-18 J. Qin, W. Wang, Y. Lu, C. Xiao, X. Lin

[8] D. Deng, G. Li, J. Feng, and W.-S. Li. Top-k string
similarity search with edit-distance constraints. In
ICDE, pages 925–936, 2013.

[9] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. Efficient
exact edit similarity query processing with the
asymmetric signature scheme. In SIGMOD Conference,
pages 1033–1044, 2011.

[10] S. Zhang, Y. Hu, and G. Bian, “Research on String
Similarity Algorithm based on Levenshtein Distance,”
no. 1, pp. 2247–2251, 2017.

[11] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D.
Srivastava. Bed-tree: an all-purpose index structure
for string similarity search based on edit distance. In
SIGMOD Conference, pages 915–926, 2010

[12] G. Li, J. Wang, C. Li, and J. Feng. Supporting efficient
top-k queries in type-ahead search. In SIGIR, pages
355–364, 2012.

[13] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D.
Srivastava. Bed-tree: an all-purpose index structure
for string similarity search based on edit distance. In
SIGMOD Conference, pages 915–926, 2010.

[14] Z. Yang, J. Yu, and M. Kitsuregawa. Fast algorithms for
top-k approximate string matching. In AAAI, 2010.

[15] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set
similarity joins. In ICDE, pages 916–927, 2009.

[16] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE,
pages 257–266, 2008.

Biographies

Ibrahim Musa Conteh, M.Sc. Computer
Science, Huazhong University of Science
and Technology (HUST), Wuhan, P.R. China;
B.Sc. Information Systems, Institute of
Public Administration and Management,
University of Sierra Leone.

Gibril Njai, M.Sc. Information Engineering,
Chongqing University of Posts and
Telecommunications (CQUPT), Chongqing,
P.R. China; B.Sc. BIT, Njala University,
Sierra Leone.

Dataset Top-5 Top-
10

Top-
20

Top-
30

Top-
40

Top-
50

Top-
60

eBay 99.5% 98.9% 97.2% 97.7% 97.8% 98.2% 98.9

IMDB 99.4% 99% 96.7% 96.7% 95.3% 96.8% 97.5%

Author 99.6% 99.7% 98.3% 98.4% 98.2% 98.9% 97.8%

