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Abstract – With the rapid growth in internet technologies, 
the optimization of web search and information retrieval in a 
large dataset repository is of a serious challenge. The filter- 
and-verify framework for non-candidates pruning with some 
lower bounds of edit distance has been widely used. However, 
this framework is generally inefficient due to their breadth 
first search algorithm that results in repeated computations 
and it answers are based on approximations. To solve this 
problem, we proposed a weight-less top-k fast search 
algorithm that largely avoids repeated computations and can 
achieve better results regardless of the scales of similarity 
search. The efficiency and effectiveness of the proposed 
algorithm are empirically demonstrated with Java and 
Microsoft excel using real-world datasets as simulated data. 
Moreover, we compare our algorithm with the filtering 
methods to verify its efficiency and early termination of a 
query when the results were found using the same device 
specifications. Experimental results show that our approach 
performs 2 times faster than traditional methods with more 
than 97% of the results returned. 
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1. INTRODUCTION 

 
As the demand for data increases, particularly in this era of 

big data, the optimization of web search and information 
retrieval in a large dataset [1] repository becomes serious 
research challenge [2]. In the real-world, string similarity 
search have many applications such as spell checking, web 
search [3], data cleaning, DNA sequence search, and 
plagiarism detection. Given a set of strings and a query, 
string similarity search aims to find all strings from the 
string set that are similar to the query. The more fact you 
have from the data the more self-assured you will be in 
taking a decision. We used data mining techniques to know 
the hidden information by analyzing the huge and complex 
dataset at hand. There are many metrics to quantify between 
strings like Jaccard, Dice, cosine and edit distance [3][4]. To 
tolerate typographical error, the edit distance is the most 
widely used metric [5] In this paper we consider the later to 
quantify string similarity. 

In string similarity searching studies, authors in [6][7] 
techniques mostly emphasize efficient filter performance 
with an effective and efficient indexing structure. The 

authors in [8][9] studies threshold-based similarity search 
problem using filter-verification model. Such method 
requires more computational time and hence very expensive 
to perform. 

Chen Li et al in [10] studied ScanCount, DivideSkip, and 
MergeSkip algorithms for string similarity. Their focus was 
on how to identify similar strings efficiently in a set of strings 
given a query string. Again, recent studies on top-k similarity 
search in [11][12] are inefficient for threshold-based search 
because they cannot make full use of the given threshold to 
do pruning. These existing methods are efficient either for 
threshold- based search or for top-k search and most of them 
can’t efficiently support both of the two problems. Thus, the 
need for an optimized framework to efficiently support the 
two variants of string similarity search with inverted index. 

To address this problem, we propose an optimization 
scheme for top-K similarity search with inverted index. We 
defined n-grams as possible finite number of strings. The 
more candidates are fetched, the more accurate our 
algorithm will be. We also consider the trade-off between the 
query performance and the accuracy of the answers. The 
experimental study shows that our algorithm can achieve the 
best performance compared with other algorithms with very 
high accuracy. 

 
The rest of the paper is organized as follows. In section II, 

we presented our algorithms and how its implemented. 
Preliminaries in section III. Framework description in 
section IV. Experimental results and analysis in section V. We 
conclude in section VI. 

 

2. ALGORITHM AND IMPLEMENTATION 

 
In this paper, like most algorithms dealing with the string 
similarity search problem, a filter-and-verify framework was 
also used. We adopt the index structure and propose a light- 
weight top-k search algorithm. It was implemented in 
Windows 10 operating system with 64 bits computer. The 
processor used: Intel(R) Core (TM) i5 – 3337U @ 1.80GHz, 
1.80GHz with 4 GB RAM. We evaluated this algorithm by 
varying K-value and varying the datasets as well. We 
compared our algorithm performance “Weight-Less top-k fast 
search”, with different algorithms like Flamingo, Apriori, HS- 
Top-K, and Appgram. 
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3. METHODOLOGIES 
 

We integrated an index structure that has a one-level 
inverted index, and design a faster search algorithm call 
Weight-Less top-k fast search algorithm. Here, these 
technologies were used: N-Gram technology, indexing 

technology, Filtering, and Verification technology and Edit 
distance 

 

3.1 The N-Grams and Inverted Index 
 

N-grams scenario in this paper, if you are given S as a 
query string and n is a positive integer, we obtained a set of 
substrings by sliding window of size n over string S starting 
from the first component in the string to the latter 
component in the string. which is the n-gram set of string S, 
and it is represented by; 

Gn (s) For string “Conteh”, 

its 3-gram set is G3 (Conteh) = {” con”, “ont”, “nte”, “teh”}. 

The most essential aspect of using this n-gram based 
inverted index method was for the use of the inverted lists to 
find all candidate strings that have a certain number of same 
n-grams with the given query string. We constructed our 
inverted index due to n-gram, and assign a key to each of the 
n-grams and have the string that comprises the n-gram into 
the equivalent inverted list. Algorithm 2 is responsible to 
decompose the raw data and the issued query from the user 
into grams. These decomposed 5-grams will be stored in the 
index for easy retrieval of the inverted list. If the length of the 
input has fewer or same gram length (less or equal 5 gram) in 
this case, there was no need for the decomposition of the 
query and we will just return the input as a gram. When the 
user is trying to retrieve an answer without issuing a query, 
this will throw an error “the input is empty” to notify the user 
must enter a query before searching. 

 
Algorithm 2: N-Gram processing operations 

Line 1: public static List<String> 
getNGram(String input) throws Exception { 

if (input == null 

throw new Exception ("The input is empty"); 

List<String> indexes = new ArrayList<>(); 

if (input.length() <= GRAM) 

indexes.add(input); 

return indexes; 

for (int i = 0; i < input.length() - GRAM + 1; i++) 

StringBuilder buffer = new StringBuilder (); 

for (int j = i; j < GRAM + i; j++) 

buffer.append(input.charAt(j)); 

indexes.add(buffer.toString()); 

return indexes; 

 

  

 Algorithm 1: Weight-Less Top-K Fast Search String 
Similarity Algorithm 

 start 

Declare input Variable: Q = Query; Tds = Training 
Dataset; K = Number of result 

Declare output Variable: R =Top-K Result 

Get Tds from source 

Decompose strings to N-Gram 

Building of inverted index for Tds 

Store the index (Key & values) 

Repeat step 5 for each incoming Tds 

Get Q from user 

Decompose Q; by Repeat step 3 

Change Q to N-Gram 

Use Gn(q) to get N-Gram set 

Using the key for generating the inverted list 

Stop 

Assigning K Sequence 

Assigning max-heap H and a threshold (t) using 
first visited K sequence 

Generate an inverted list 

Combined the retrieved list 

Sort by F for both exact & approximate N-Gram list 

Count F for each string Tds 

For each unprocessed string s in Tds 

Select candidate if F >= Lower Bound (t) 

If F[s]>= t then 

Calculate ED (q, s) 

If ED (q, s) < (t) then 

Update H and t 

Stop 

Rank result by similarity to Q 

Output Top-K result 

Stop 
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3.2 Index and Compression Technique 
 

We used one level inverted index and introduced some 
ideas of Wang et al. in [13] that used a two-level inverted 
index. For the recovery of the top-k string, we store with the 
string id’s, key, and each word’s frequency in the document 
will be calculated and store in a sorted form which could aid 
in improving searching performance. We constructed this 
Inverted Index through the n-gram set of our data, preparing 
every n-gram as the key and place the string that contains the 
specific n-gram into a matching inverted list, when the user 
issue the query, likewise, this query will also decompose 
using the same principle. This was used to recover the 
matching inverted list from the index according to exact n- 
grams. 

Different from the ordinary inverted index, after getting 
the inverted list from the index, you could consider either 
exact n-grams or using the approximate n-grams for result 
retrieval. Therefore, to know which string comprises the 
certain n-gram (substring), we need just to acquire the 
inverted list by its key. Example, given four strings 
“approximant”, “approximate”, “Approximation”, and 
“Approximately” we can update the inverted index by adding 
their information into the inverted index and get a simple one 
when we want to add information of other strings. We just 
have to look for the corresponding n-gram and update this 
information to the inverted list. 

Compression technique helps to improve the searching 
performance through an algorithm that codes information. 
We used compression also for keeping more information in 
cache memory. Their practicality determines their power to 
exploit newly or regularly used data. 

 

3.3 Edit Distance 
 

Edit distance was used as the similarity function. The 

gram length used was 5 for decomposing datasets. This is a 

technology used to measure the dissimilarities between 

strings S1 and S2 denoted by ED (S1, S2), using Substitution, 

Insertion, and Delete (SID) operations. This is applicable in 

natural language, detection [8][14] to quantify the similarity 

and spelling correction in both data and the query, by 

selecting the word with less edit distance. This technique 

was implemented for the selection of the most appropriate 

candidate from the retrieved candidate strings, which are 

more similar to the issued query for result processing. In this 

process, the retrieved candidate that satisfied the threshold 

condition will be considered in the selection of the top-k 

result. Algorithm 3 show how we implemented edit distance 

operation in this paper. It is responsible to compute the 

similarities between the input and the existing grams. 

 
Algorithm 3: Edit Distance processing operations 

Line 1 private int similarity(String query, String word) 

return GRAM - distance(query, word); 

private float similarity(String word) 

int distance = distance(query, word); 

return (2f * distance) / (query.length() + word.length()); 

public Object2FloatMap<Pair> call() throws Exception 

return getCandidates(); 

3.4 Query Result Ranking 

The ranking was done for both exact match and non-exact 
match (similarities ranking) with edit distance techniques 
between the datasets and the issued query. The candidates 
were ranked by their exactness or similarity and only top-k 
results were returned. This algorithm will continue to search 
the data until it fetches all the top-k result [15], it is 
terminated immediately and present the fetched result. 

There are certain word operations to perform between 
the datasets and the query. There are other sets of queries 
like the Boolean query, a function that assigns a 0 number to 
represent non-matching and number 1 represents matching, 
but this is not the case in this study. The simple approach is to 
total the term frequency of the selected candidates, the one 
with the highest frequency will be ranked higher for easy 
selection of the top-k. Algorithm 4 is responsible for ranking 
the selected candidate base on similarities, using their ids. We 
created a map that responsible for holding the ids and their 
similarities. Moreover, the k-value there is the top-k 
outputted result and it was returned in a ranked manner. 
Were the candidate with higher similarities will be at the top 
of the ranking. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 4: Ranking Process 

public static List<Pair> 

sortBySimilarity(Object2FloatMap<Pair> map, 

int kValue) 

{ 

int size = map.size(); 

return map.object2FloatEntrySet().stream() 

sorted(comparing(Map.Entry::getValue)) 
.map(Map.Entry::getKey).collect(toList()).subList(0,(size 
> kValue ? kValue : size)); 

} 
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4. FRAMEWORK DESCRIPTION 
 

We divide the filter-and-verify framework into two 

processes according to their different functions: filtering 

process and verification process. After building the inverted 

index for dataset S. Given a query string q, we can 

decompose it and obtain an n-gram set in which n, is the 

same as the setting for the inverted index. Thus, according to 

the n-gram set, we can retrieve several inverted lists and 

many filter techniques [16] can be applied to prepare the 

candidate set; in the verification process, all the candidates 

will be verified and the n most similar strings will be 

returned as the top-k results. 
 

In the Gram-based method, we considered the following 
three key steps: 

1. The Indexing step: We assemble an inverted index 
from the string set, which takes all the grams to be 
the keys and the strings that comprise the gram as 
the values 

2. Candidate generation step: We inspect the inverted 
index through the grams in the issued query string 
and the interim counts the accuracy of the strings in 
the chosen lists. We could select a string to become a 
candidate if its appearances are above or equal to 
the lower bound. Length filter is one of the filter 
techniques used in this step for reducing the number 
of candidates. 

3. Verification step: we calculate the exact distance 
between the candidate and the issued query, we 
added a candidate to the final result only if the 
distance is less than or equal to the given threshold 
(t) denoted as ED (s, q) <= t 

 
5. EXPERIMENTAL STUDY 

 
In this section, we conduct an extensive set of experiments to 
evaluate the efficiency of our algorithms and compare with 
other methods. 

 
5.1 Experiment Setup 

 
We used three real datasets in our experiments: eBay, 

Author, IMDB, which are widely used in previous studies 
[11]. Author contains short strings, Query Log contains 
medium-length strings, and DBLP contains long strings. Our 
first experiment was done using different N values, while the 
second experiment was to compare our algorithm with 
others like Flamingo, HS-TopK, Appgram and Appriori. 
During the experimental process, we selected the average 
query time and the average maximum edit distance for 

evaluation measures, and execute all different 
algorithms at these K-values: 5, 10, 20, 30, 40, 50, 

and 60 on all our three datasets used in this study. We 
presented the excremental results of our proposed methods. 
All the algorithms were implemented in Java and MS excel on 
a Windows 10 operating system with 64 bits . The processor 
used: Intel(R) Core (TM) i5 – 3337U @ 1.80GHz, 1.80GHz 
with 4 GB RAM. We implemented our algorithm in the 
following datasets as shown in Table I. 

 
Table – 1: Summary Dataset 

 

Dataset Records Size Format 

eBay 258,589 72.9 MB Csv 

Author 194,788 47.8 MB Csv 

IMDB 153,428 32 MB csv 

 

5.2 Performance Evaluation 
 

1. Evaluation at different N-Value: We evaluate the 

performance of N-Value on the three datasets. The 

experimental analysis in Chart 1-3 is shows a clear 

performance of different algorithms in different candidate 

size (N value) on all three used datasets. In this, we differ the 

size of N as 1000, 2000, 4000, 8000, 16000, 32000 and 

64000 while setting the K value as 5, 10, 20, 30, 40, 50 and 

60 with query time in milliseconds (ms). Thus N-Value will 

terminate within a less ms. 
 

2. Comparison on Different Datasets: We compared our 

WL-Search algorithm with other algorithms as shown in 

Chart 4-6 by varying different edit distance metric on the 

three datasets. Chart 4-6 shows an explicit performance 

comparison between five algorithms and our WL-search 

algorithm including four others, with an N value of 16000 for 

all three different datasets. Moreover, varying the K value as 

5, 10, 20, 30, 40, 50, and 60. Results shows our algorithms 

returns search result in less computational time. 

 
3. Verification and Filtration Time: In Chart 7-9, we show 

results of the comparison of records of WL-Search and 

Appgram algorithms in their verification and filtration time 

at different K-Value. This is to demonstrate the time each of 

these two best algorithms took the verification and filtration 

in a bar chat representation. The analysis was done in all the 

three different datasets and each diagram contains four 

different colored bars, except the eBay dataset that has three 

different bars, which means no filtration time for Appgram. 

The blue and brown represent our WL-Search. 
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4. The Top- K Results: The top-60 result was retrieved in the 

eBay dataset within 401 milliseconds (ms). To obtain this 

time, we issued many queries with a threshold of 3. We also 

increased the size of the records in each dataset. Chart 7 is 

showing the query time of the Weight-Less top-k fast search 

algorithm took to execute the top-60 results. The query 

“legend” was issued in the eBay dataset for the top 60. 

 

Chart -1: Evaluation on eBay dataset – K-Value N-Value 
 

 
Chart - 2: Evaluation on eBay dataset – K-Value N-Value 

 

Chart - 3: Evaluation on Author Bay dataset – K-Value N-V 
 

 

Chart - 4: Algorithms Comparison on eBay Datasets 
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Chart -5: Algorithms Comparison on eBay Datasets 

 

Chart - 6: Algorithms Comparison on eBay Datasets 

Chart -7: Verification and Filtration Time on eBay dataset 
 

Chart - 8. Verification and Filtration Time on IMDB 

dataset 
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Chart – 9: Verification and Filtration Time on Author 

dataset 

 
TABLE:2 ACCURACY OF WL-SEARCH ALGORITHM 

 
 
 
 
 
 
 

 
6. CONCLUSIONS 

 
In this paper, we studied the problem of string similarity 
search. We find the top-k string similarity search problem 
using edit distance. Although existing approaches usually try 
to reduce the number of candidates by building index 
structure and using a powerful filter with a high time 
expense to optimize the query performance, we tackle this 
problem by proposing a new weight-less approach which 
mainly decreases the number of candidates. By choosing a 
proper N and verifying the string which has a high 
frequency, we got good performance both on efficiency and 
accuracy of our algorithm. The results of our algorithm are 
ranked according to a defined similarities function. We then 
integrate current filtering methods with the algorithms, and 
finally design our algorithm for early termination when the 
results were found. The algorithm has proven to have higher 
accuracy and best performance in string searching compare 
to other methods. 
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Dataset Top-5 Top- 
10 

Top- 
20 

Top- 
30 

Top- 
40 

Top- 
50 

Top- 
60 

eBay 99.5% 98.9% 97.2% 97.7% 97.8% 98.2% 98.9 

IMDB 99.4% 99% 96.7% 96.7% 95.3% 96.8% 97.5% 

Author 99.6% 99.7% 98.3% 98.4% 98.2% 98.9% 97.8% 

 


