
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1128

Combination Attack: XSS+SQL Injection Attack Demonstration

Adit Bhosle1

---***--
Abstract - There has been a significant rise in Cyber
attacks. Hackers have started finding more bugs in websites
and they have also found more unique methods to penetrate
into websites. The objective of this paper is to perform a
demonstration of a combination attack. Out of the several
methods used to hack into websites, most common ones
include XSS attack and SQL injection attack. In this paper, it
has been demonstrated how XSS and SQL injection can be
used simultaneously to hack into a website. Along with the
demonstration of the attack, prevention techniques have
also been mentioned. Input sanitization can help prevent
these attacks. Sanitization techniques have also been
demonstrated.

Key Words: Cyber attacks, Demonstration, XSS, SQL
injection, Sanitization Techniques

1.INTRODUCTION

Over the past few years, with the advancement of the web,
there is more data flowing over the web. With more data,
comes more sensitive and Personal Information (PI) such
as card details, salaries, medical records etc. This can be
classified as Sensitive Data(SD). Hackers around the web
might want to gain access to Sensitive Data (SD) for their
own interests such as gaining access to your credit card
details and use the money for their ill-minded intentions.

Websites nowadays are well equipped with cyber attack
detection and prevention mechanisms. Yet they are not
hundred percent bug free. Hackers are intelligent enough
to find flaws which mainly originate as pieces of poorly
written code and logical errors. This paper will
demonstrate how poorly written code can result in a
website being exploited using XSS and SQL injection
attacks.

As hacking a website is an unethical task, for this
demonstration, a dummy website has been developed
using PHP, MYSQL in the backend. Any implementation of
the demonstration on another website is highly
discouraged. Trying to hack websites can lead you into
trouble, with website owners having the right to take legal
action against you.

XSS and SQL injection attacks are a result of poor
Sanitation of input data. Input fields such as login
credentials, comments, text fields etc can be exploited by
the hackers if data being input is unsanitized. Hackers try
to use JavaScript and SQL code as input data to exploit
logical errors in the code and try to gain access to cookies,
usernames, passwords etc. In this paper, Sanitation

methods have also been demonstrated. One of the
Sanitization techniques is Blacklisting. It has been
implemented in the paper and we can see how
implementing them can render XSS or SQL injection
attacks useless.

2. LITERATURE REVIEW

According to the CISCO 2018 Annual Security report, there
shall be at least one vulnerability in any web application
when analysed properly. These vulnerabilities are now
more exploited. Of all the attacks, 40% were found to be
executed using Cross Site Scripting. Cross Site Scripting is
ranked as 7 in OWASP Top 10 security risks 2017[1,4].

Cross Site Scripting is one of the first vulnerabilities to be
identified. Malicious code is injected from the source to the
user browser. This can result in stealing of cookies with
Personal Information such as Credit Card details, login
credentials etc [2].

SQL injection is one of the most lethal attacks that can be
launched against any web application involving databases.
64% web applications worldwide are vulnerable to SQL
injection attack improper input mechanisms.[3]

In the OWASP top 10 list of attacks, SQL injection has
always assumed the top spot. An input field is required
such as url, input fields in a form etc where a payload (SQL
code) could be injected. This payload could bypass the SQL
queries running in the backend of the web application
thereby leading to compromisation of the data in the
application.[4]

SQL injection and XSS can be prevented using input
sanitization. Two sanitization methods include blacklisting
and whitelisting. Blacklisting, as name suggests, listing out
the inputs which are flagged as malicious in nature. Usage
of ‘<script>’ tags or use of operators such as “=” etc is not
allowed as they could play with the logic of codes and
queries running in the backend. Whitelisting is the polar
opposite of Blacklisting. It refers to the list of
symbols/characters that can be allowed.[5]

3. CYBER ATTACKS

Two attacks will be discussed in this paper .

3.1 XSS(Cross Site Scripting)

XSS, an acronym for Cross Site Scripting, is an injection
attack. The injected code is usually written in JavaScript
which is the browser side script. This attack occurs when

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1129

input is not properly validated or encoded. It allows the
hackers to force through the SOP (Same Origin Policy).

In many websites, cookies are used to store your login
credentials temporarily so that you may not have to log in
again and again. But this is highly risky. It would be
advised to keep a user logged for a short period of time
when inactive rather than remembering login credentials
in the form of cookies as these cookies are easily
accessible from the user side with the browser using
Javascript or any other browser in-build tools, utilities
etc[2]. Thus your Sensitive Data confidentiality might be
compromised. It can be used to capture login credentials,
get access to unauthorized data, masquerading,
performing unauthorized tasks etc.

3.2 SQL injection

SQL injection is also an injection attack. As the name
suggests, SQL code is injected into websites . Database
vulnerabilities are exploited in this attack.

For most websites, data displayed on the web page arrives
from SQL database servers. Login/ Registration forms,
comments etc, everything is loaded into the backend from
the databases. When we try to login to a website, an SQL
query is run in the backend to verify your credentials. In
case of registering an account, additional rows are added
into the database. If sanitization is not practiced, input
fields of the page could be filled with SQL code which
could logically end up commenting out a certain section of
the SQL query that is run in the backend which could
result in granting login permission without knowing the
actual credentials. This one of several examples of how
SQL injection is implemented. It can be used to retrieve
hidden data, subverting application logic, examining
databases, UNION attacks(retrieve data from various
databases) etc.

4. IMPLEMENTATION OF THE COMBINATION ATTACK

4.1 XSS attack

As we can see in Fig - 1, there is a text area where you can
write a few comments. We have stored a temporary
username and password in the form of a cookie in the
page itself. We will try and exploit this text box

Fig - 1: Post Comments Section

Fig - 2: After posting a comment

In Fig - 2, we can see our comment “Hello World”. Now let
us try and put in some html scripts to see if there is any
change. We will be putting some text inside the h1 tag and
trying to submit

Fig - 3: Posting Comment using h1 tag

As we can see in Fig - 3, our suspicion was correct. The
content being posted is not being sanitized. What this
means is that this Post Comment box can be used to
perform XSS attacks. We can now conclude that an XSS
attack is possible. So now let's try and put in some
javascript code into this comment box.

Fig - 4: JavaScript code for Alert Window

Fig - 5: Alert window returned by the user

Javascript also works as we can conclude from Figure Fig -
5. We were able to create an alert window using JavaScrip
as we can see in Fig - 4. Now let’s see if there are any
cookies stored.

Fig - 6: JavaScript code to return cookie contents in the
alert window

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1130

Fig - 7: Alert window with the cookie details

In Fig - 6, we have written a Javascript code to alert us
about any cookies stored. We can see that there is a cookie
that is being stored in Fig - 7. It stores the username and
password. What this means is that we just need one
person to have logged out from our browser and his
cookies will have been temporarily stored until some
other login. Now we could do a little better than this. We
can actually store these details in a file and locally rather
than having a pop up box for that we write another short
piece of code.

Fig - 8: savecookies.php file

In Fig - 8, we can see a piece of code in which we have
opened a file called ‘saved.txt’. Into this file we will write
all the contents of the cookies into it. After this we write
the following piece of code into the comments section. In
Fig - 9, we can see JavaScript code. This code will save
cookie data in saved.txt.

Fig - 9: JavaScript code to save cookie content in ‘saved.txt’
file

After pressing submit, the screen will go blank and we
would be able to see the username and password stored in
the cookie in the address bar of the browser. If we open
the saved.txt file, we will find the username and password
stored in it (Fig - 10). This way we have completed the XSS
attack.

Fig - 10: “saved.txt” file content after running the
JavaScript code

But is this enough? We have successfully demonstrated an
XSS attack but is it good enough? There is a major flaw in
this design. The flaw is that we are doing an XSS attack
only to find our own password and username. What good
is that? We know our own username and password, but
what is the point of that? We need to find a way of getting
to know someone else's username and password. But how
can we do that? We need to login as a different user to get
his/her username and password. This can be achieved by
performing another attack, SQL injection attack.

4.2 SQL injection

Let’s go to the login page now (Fig - 11). We need to see
what parameters are being passed in order to perform the
SQL injection attack. We will use BurpSuite to find out
what parameters are actually being passed.

Fig - 11: Login Page

After turning the intercept on,

Fig - 12: BurpSuite intercept

At the end, we can see the parameters being passed (Fig -
12). They are username and password which Is pretty
straightforward. Now that we know this, let's try and
inject some payload.

Payload = xxx’ OR 1=1 --]

To demonstrate what this payload actually does, let's take
a sample sql query

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1131

SELECT * FROM users WHERE username=’xxx@xxx.com’
AND password=’xxx’ OR 1=1 --]

 SELECT * FROM users WHERE username=TRUE

Now we see what this payload does. It comments out the
further section of the code and bypasses the query. As a
true result gets returned, we should get logged in. Let’s try
this now

Fig - 13: Using the payload as Password

Fig - 14: Home page of the website

After injecting the payload (Fig - 13), we can see Fig - 14 ,
the homepage. As expected we have successfully logged
into the website. Now everything is according to plan. Now
we will perform the XSS attack.

Fig - 15: Using the same JavaScript code as used in ‘Fig -
9’ to save the contents of the cookie in ‘saved.txt’ file

In Fig - 15, we are writing code to access the cookies and
saving them in our ‘saved.txt’. After clicking submit, the
screen goes blank again. If we check our ‘saved.txt’ file, we
can see the username and the password will be present.
(Fig - 16)

Fig - 16: Contents of ‘saved.txt’

This time we were successful, we were able to retrieve
someone else's username and password using XSS because
we had used SQL injection to login. Thus we have
successfully demonstrated XSS and SQL injection attacks.

But there is a question one would have in mind. Whose
username and password have we retrieved ?

It will be of the person who just logged in before using the
browser. When one person logs into his / her account,
usually a cookie is set which might be saved for some time.

Fig - 17: php code snippet showing cookies being created
and saved for an hour

As we can see in Fig - 17, for our dummy website, the
cookies had been set with one hour expiry time (3600).
Thus even if you logged out, for one hour, your data will be
stored unless and until someone else logged in.

5. PREVENTION MECHANISM

As seen in the earlier demonstration, the system was
compromised after we were able to inject an SQL payload
to get access into the website. Later, the comments section
was used to inject JavaScript code to fetch the data stored
in the cookies.

The issue is that the data input is not sanitized. Javascript
tags, quotes, operators like ‘=’, ‘/’ should be stripped of.
The trick here is that you have to comprehensively come
up with everything that you think might be bad and add it
to the blacklist. If untrusted data contains one of these bad
patterns, you reject it.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1132

The following 2 functions will be used to implement black
listing.

1. mysqli_real_escape_string: escapes special characters
in a string for use in an SQL query, taking into account the
current character set of the connection.

2. stripslashes: The stripslashes() function removes
backslashes added by the addslashes() function. (i

Here are some changes that we would implement on the
existing code

Fig - 18: Making changes to the login page code

Fig - 19: Making changes in the post section code

This way, our SQL injection payload is rendered useless.

Payload = xxx’ OR 1=1 --]

The ‘OR’ keyword triggers mysqli_real_escape_string() and
therefore we get an incorrect password. These changes
make our website secure to XSS and SQL injection attacks.

Fig - 20: Secure Login Page

This will lead to an incorrect password.

Fig - 21: Failed Login Attempt

And thus the attack is stopped in its tracks.

6. CONCLUSIONS

SQL injection and XSS attacks are very common. They are
always present on the list of OWASP top 10 attacks. They
are not very hard to implement and can retrieve personal
and sensitive information. Web applications need to be
well equipped with various defence mechanisms such as
detection and prevention systems. Sanitization is one
prevention mechanism. Although not demonstrated, using
our Blacklisting method would have also worked for XSS
attacks. The XSS attack made use of ‘<script>’ tags. It also
made use of the ‘</script>’ tag which contains the
character “/”. Therefore it would not have been able to
bypass the stripslashes(i) function and thus the attack
would be prevented.

But then again this method is not full proof. There is a
good chance that a comment might want to include an
operator ‘=’,’/’ etc without any ill-intention. In this case,
user satisfaction is compromised, Thus a work around for
that will need to be thought of.

We have to also take into consideration that to get cookies,
we need someone else to login through the browser and
then access the same browser in the same machine to
access the cookies. Accessing those cookies remotely will
be very difficult and also, this task must be done within an
hour or else the cookies will expire.

No website is completely invulnerable. There is always
someone on the web who can find a small flaw and exploit
it. We have to always be prepared and proactive. As new
bugs and flaws are found, they need to be fixed and new
and improved methods to prevent vulnerability
exploitation must be developed.

REFERENCES

[1] GermánE.Rodríguez,JennyG.Torres, Cross-site
scripting (XSS) attacks and mitigation: A survey, Computer
Networks, Volume 166, 15th January 2020.

[2] K.Vijayalakshmi , E Syed Mohammad, Case Study:
Extenuation of XSS Attacks through Various Detecting and
Defending Techniques, Journal of Applied Security
Research, March 2020.

[3] Muhammad Saidu Aliero, Imran GhaniAn
algorithm for detecting SQL injection vulnerability using

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1133

black-box testing,, Journal of Ambient Intelligence and
Humanized Computing , 7th Febuary 2019.

[4] Robinson, Memen Akbar, SQL Injection and Cross
Site Scripting Prevention Using OWASP Web Application
Firewall, International Journal of Informatics
Visualization. VOL 2 (2018) NO 4.

[5] Ouissem Ben Fredj, Omar Cheikhrouhou, An
OWASP Top Ten Driven Survey on Web Application
Protection Methods, Risks and Security of Internet and
Systems, 15th international Conference, CRiSIS 2020,
Paris, France, November 4-6, 202

