
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 10 | Oct 2021                 www.irjet.net                                                                       p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 965 
 

A STUDY ON DIFFERENT CACHING TECHNIQUES AND USING CACHE AS A 

SERVICE  

Ashutosh Patil1, Anuj Pande1, Amol Patil1, Prof. Jagdish Kamble 2  

1Dept. of Information Technology, Pune Institute of Computer Technology Pune, Maharashtra, India 
2Professor Dept. of Information Technology, Pune Institute of Computer Technology Pune, Maharashtra, India 

---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract - Traditional Cache-Server system as we know it, 
is sufficient in the current scenario, but there are certain 
parameters, where this traditional system might be having 
some scope of improvement. Hence, with this view in mind, 
we propose a system, where we will implement cache as a 
service, where the application cache will be completely 
independent of the servers, making it a global cache. In the 
proposed system, is the one whose benefits far outweigh the 
liabilities like network latency, which is negligible. The 
profits include no data redundancy or decrease in time for 
recovery in case of server going down and many more 

Key Words:  cache-server system, global cache, 
application cache, network latency, data redundancy 

1.INTRODUCTION 

In large enterprises, distributed shared cache is used. So 
you'll directly add dependency for the precise cache in 
your application so as to start out using it. But that isn’t a 
very competent method since it might happen that in the 
near future, another more reliable caching solution may 
emerge & enterprises decide to use that. As a result, cache 
can be hidden behind a service to protect the caching layer 
from potential problems. 

In our proposed system our main aim is to build cache as a 
service, where a single application cache would act as a 
global cache, and it will provide an almost 100% service to 
all of the servers. We are proposing a system which will 
serve as a global cache to the applications that would be 
present in a particular organisation or a system. This 
system will also help in abstracting the cache layer. 

1.1 WHAT IS CACHE 

Imagine that you have a system like this. Client Application 
requests for a few results from the server and therefore 
the server asks those details from the Database. Then 
Database pulls the results to the appliance server. Without 
pulling data from the Database all the time we'll maintain 
another database/server to store data called Cache. Here 
there are 2 scenarios that you simply might want to use a 
cache. 

When you request commonly used data, and every time 
we ask for that data we need to provide it from the 
Database. Instead of this, you'll save those commonly used 

data during a cache (in-memory cache). Here we can 
reduce network calls. 

When you do a calculation by getting data from the 
database. You can reduce the amount of calculations here. 
Store the end in cache and obtain the worth from the 
cache without doing recomputations all the time.  

We have all servers and that they are hitting the database. 
It’s getting to be tons of loads. Instead of using one cache, 
we'll employ multiple caches as part of a distributed 
system to reduce load within the database. 

1.2 DATA ACCESS STRATEGIES 

1.2.1 READ THROUGH 

Load data into the cache only when necessary. If the 
appliance needs data for a few key x, search within the 
cache first. If data is available, return it; if not, retrieve the 
data from the data source, put it into the cache, and then 
return it. 

1.2.2 WRITE THROUGH 

While inserting or updating data within the database, 
upsert the info within the cache also . As a result, each of 
these operations should be performed in the same 
transaction to avoid data staleness. 

1.2.3 WRITE BACK 

The application writes data directly to the cache system in 
this technique. The written data is then asynchronously 
synced to the underlying data source after a specified 
interval. As a result, the caching service must keep track of 
a queue of 'write' operations in order to sync them in 
order of insertion. 

2. PLACING OF THE CACHE 

Cache can be placed on the server's edge as well as the 
database's edge. How can you place the cache if it's close 
to the servers? You can place it in-memory itself (in-
memory within the servers)[5].Yes, using an in-memory 
cache with the server will speed things up. But there will 
be some problems. For example, 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 10 | Oct 2021                 www.irjet.net                                                                       p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 966 
 

 

Fig -1: Placement of Cache close to the servers 

The primary problem is the Cache failure. Let’s make an 
assumption that Application Server 1 failed. The result of 
it will be that the Cache will also fail. In Application 
Server1, we will lose that data. 

The next thing is consistency. The data on Application 
Server 1 and Application Server 2 are not interchangeable. 
They aren't on the same page. You can't keep this if there's 
some critical data on it.(Ex: Updated Password or any 
other credentials). 

 

Fig -2: Placement of cache in the form of global cache 

If we place a cache close to the database using a Global 
cache, the benefit is that each one server is hitting this 
global cache. If there's a miss it'll query the database 
otherwise it'll return data to the servers. And we can 
maintain distributed caches here. And it'll maintain the 
info consistency. 

Hence our preference is to build a global cache 

 

 

3. COMPARATIVE STUDY OF CACHING 
METHODOLOGIES 

EHCACHE REDIS 

It belongs to ‘Cache’  
category of the techstack 

It can be primarily be 
classified under “In-
Memory DataBases” That 
persists on the disk 

No Secondary Database It supports Secondary 
Database 
Database Models: 
Document store 
Graph DBMS 
Search engine 
Time Series DBMS 

Implemented in JAVA Implemented in 
C(predictably faster) 

Supporting Server OS: 
All OS’s with JAVA VM 

BSD 
Linux 
OSX 
Windows 

Access Control: NONE Provides single password 
based access. 
Moreover, access control 
lists and SSL are available 
in the commercial version. 

Complete Data type 
support 

Partial Data type 
support(strings, hashes, 
lists, sets, bit arrays, 
hyperlogs & geospatial 
Indexes) 

No secondary Index, Use 
of triggers 

Secondary indexes: YES, 
no triggers used 

Access Methods & APIs: 
JCache 

Proprietary protocol-
RESP(Redis Serialization 
Protocol) 

Supported languages: 
JAVA(only) 

C/C++ 
GO 
Objective C 
Python 
R 
Ruby 
Scala 
And Many more(36 in 
total, including above) 

No server side script is 
used 

IT is used(Lua) 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 10 | Oct 2021                 www.irjet.net                                                                       p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 967 
 

Tunable 
Consistency(Strong, 
Eventual, weak) 

Strong eventual 
consistency with CRDTs 
Eventual Consistency 

Table -1: EhCache vs Redis Comparison 

After careful consideration, It can be implied that Redis is 
the most suitable one to use 

4. REDIS CLUSTER: 

A Redis cluster is nothing more than a data-sharing 
scheme. It distributes data across numerous Redis nodes 
automatically. It's a more advanced version of Redis that 
allows for distributed storage and eliminates the 
possibility of a single point of failure.[4] 

● A service channel connects all of the nodes 
directly. 

● The binary Node to Node protocol is designed to 
optimise bandwidth and speed. 

● Clients communicate with nodes using the ascii 
protocol, with minimal modifications. 

 

Fig -3: Redis Cluster 

4.1 MASTER SLAVE STRATEGY: 

Redis also offers simple master-slave asynchronous 
replication with very fast non-blocking first 
synchronization, auto-reconnection with partial 
resynchronization on net split. 

4.2 DISTRIBUTED STORAGE: 

● Each cluster's master node is responsible for a 
subset of the 16384 hash slots. 

● Adding and deleting nodes, as well as modifying 
the fraction of hash slots held by nodes, do not 
require any downtime because shifting hash slots 

from one node to another does not require 
stopping operations. 

 5. MASS INSERTION: 

In some cases, Redis instances must be loaded with a large 
amount of preexisting or user-generated data in a short 
period of time in order to generate millions of keys as 
quickly as feasible. This is known as a mass insertion, and 
the purpose of this is to explain how to supply Redis with 
data as quickly as possible. 

5.1 PIPELINING IN MASS INSERTION: 

For a variety of reasons, using a standard Redis client to 
execute bulk insertion is not a smart idea: the basic 
technique of sending one command after another is slow 
because you must account for the round trip time for each 
command. Pipelining is possible, but for mass insertion of 
numerous records, you'll need to create fresh commands 
while reading responses to ensure you're inserting as 
quickly as possible. Only a tiny fraction of clients offer 
non-blocking I/O, and not all clients are capable of 
efficiently parsing responses to maximise performance.For 
all of these reasons, the preferred method of mass-
importing data into Redis is to create a text file containing 
the Redis protocol in raw format, which can then be used 
to execute the commands required to insert the relevant 
data. 

6. CONCLUSIONS 

 Thus we have proposed a system where cache is being 
built as a service, which would be accessible to all the 
servers present in the setup and can be accessible in the 
form of global cache. The proposed system will abstract 
the cache layer from future troubles. Small amount of data 
in the form of records was used to find out the 
observations. When the data was stored in the database 
and not in the cache, the time required for retrieval was 
1041 ms and when the data was stored in the cache, the 
time required for retrieval was 391 ms. This system will 
also improve the recovery time of the cache significantly. 

REFERENCES 

[1] High-density multi tenant distributed cache as a 
service Perraju Bendapudi,Hari Krishnan S, Jithendra 
K. Veeramachaneni,Jagan M. PeriJatin Kakkar,Amit 
Kumar Yadav 

[2] Cache Memory Organization. Priyanka Yadav, Vishal 
Sharma, Priti Yadav 

[3] Cache as a service: Leveraging SDN to efficiently and 
transparently support video-on demand on the last 
mile. Panagiotis Georgopoulos ; Matthew Broadbent ; 
Bernhard Plattner ; Nicholas Race 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 10 | Oct 2021                 www.irjet.net                                                                       p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 968 
 

[4] Redis Cluster: A pragmatic approach to distribution 
redis.io 

[5] Where is my cache? Architectural Patterns for caching 
microservices  by Rafal Leszko 

 

 

 

 


