
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1

PARALLELIZATION OF WEB CRAWLER WITH MULTITHREADING AND
NATURAL LANGUAGE PROCESSING

Ippili Akarsh1, Ravi Maithrey Regulagedda2

1-2School of Computer Science and Engineering, Vellore Institute of Technology
---***---

Abstract - A web crawler, as its name suggests, crawls the
web, looking for information it is tasked with searching
for. While it is trivial to create a simple crawler, the main
challenge lies in making one which offers improvements in
both crawling speed and result accuracy, rather than a
tradeoff between the two. In this paper, we present a
model architecture for such a crawler, leveraging the use
of multi-threading parallelization techniques and natural
language processing to achieve optimum performance. At
the end, we present our results on a sample working of the
same proposed model.

Keywords: Web Crawler, Multithreading, Priority
Queue, Cosine similarity, Tf-idf

1. INTRODUCTION
The Internet is a huge storehouse of data. While this is a
great thing, its main issue lies in its size. When one
requires to get any information from the internet, we
turn to search engines. These search engines in turn
depend on web crawlers which run in the background
constantly updating their databases in order to fetch the
best results.
 At its most basic a web crawler is a program
which visits webpages, and then visits the webpages
which are linked in the first page and so on either until a
set number of pages are crawled and the information
retrieved, or a certain query is matched with the
information contained in the webpage. To do this, they
must download the data from the webpage and scrape it,
which presents certain challenges.
 A web crawler should be able to visit the
maximum number of pages, in minimum time and also
provide results which are relevant to the topic being
queried for. To tackle this, a web crawler which runs in
parallel, via multi-threading and with each crawling
process on a different logical core can be developed. To
further our efforts, we can also use natural language
processing in order to ensure that the results are
relevant to the query being processed. This will enable
us to have a crawler which is both optimal in
performance and accurate in results.

1.1 Proposed Work
The web crawler has to perform its crawling once a

query is passed to the search engine. A root page is
present either by default or provided by the user. From
this root page, the crawling for the query goes ahead.

Each link and webpage visited further on has to be then
searched for the query in turn until a positive match is
made. This positive match itself can be evaluated in
many ways, one of which we aim to propose in this
paper.

The goal is to maximize the download rate while
minimizing the overhead from parallelization and to
avoid repeated downloads of the same page. To avoid
downloading the same page more than once, the
crawling system requires a policy for assigning a priority
to the new URLs discovered during the crawling process,
as the same URL can be found by two different crawling
processes. We propose a crawling architecture which
aims to do this via parallelization using multi-threading
and improving search using natural processing.

2. LITERATURE REVIEW
The existing web crawlers use data structures to hold
frontier sets in local address space. This space could be
used to run more crawler threads for faster operation.
All crawler threads fetch the URL to crawl from the
centralized frontier. A proposed method [1] is to use a
mutex principle to achieve a somewhat parallel-type
execution. The approach to utilize the waiting time on
mutual exclusion lock in an efficient manner has been
discussed in detail.
 The next step is to look at a three-phase crawler
[2]. The first site locating stage finds the most relevant
site for a given topic, the second in-site exploring stage
uncovers searchable forms from the site and then the
third stage applies naïve base classification to rank the
result. This would result in a more efficient crawler.
 The paper by Vandana Shrivastava [3] gives us
additional info about web crawler structure and best
practices when working with them, including but not
limited to reverse searching websites and avoiding
visiting useless pages for a more accurate result.
 Next, we take a look at a modification of the
three-phase parser to mine in Deep Web Interfaces. [4]
This type of crawler, dubbed SmartCrawler v2 is a
focused crawler consisting of two stages: efficient site
locating and balanced in-site exploring. SmartCrawlerV2
performs site-based locating by reversely searching the
known deep web sites for center pages, which can
effectively find many data sources for sparse domains.
By ranking collected sites and by focusing the crawling
on a topic, SmartCrawlerV2 achieves more accurate
results.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2

 Since the focus of this paper is to ultimately
design a parallel crawler, a look at [5] tells us of the
common problems and challenges faced in the
development of them. There are a few common design
issues with parallel crawlers. They are scalability,
network load dispersion, and network load reduction.
 As the size of the Web grows, it becomes more
difficult to retrieve the whole or a significant portion of
the Web using a single process [6]. We then look a
method to run multiple processes to cover more of the
web to make our work more efficient and to generate
better results.
 We then procced to look at some common
considerations to keep in mind when developing a web
crawler [7]. The main things to be aware of are Web
Archiving, Vertical Search Engines, Web Data Mining,
Web Monitoring, Detection of malicious websites, Web
site/application testing, Copyright violation detection,
and detection of illegal activities.
 Multi-threaded web crawler [1] [8] is an
efficient way to crawl the web in this era of big data. It
can improve the utilization rate of the CPU. Different
from single-thread, multi-thread can run other threads in
parallel while waiting for a process to improve the
utilization efficiency of CPU. It can improve the
utilization of network bandwidth. When multiple threads
are processing at the same time, the network resources
will be maximized.
 We proceed to look at a few ways to optimize
crawlers [9] by focusing on a specific domain. 1) Full
Distribution: DSCrawler (Domain Specific Crawler) is
distributed over multiple crawling machines (each for a
specific domain) for better performance. Crawling
machines download web pages independently without
communication between them. 2) Scalability: Due to the
fully distributed architecture of DSCrawler, its
performance can be scaled by adding extra machines
depending on the bases of the increase of domains, thus
manage to handle the rapidly growing Web. 3) Load
Balancing: The URLs to be crawled are distributed by the
URL Distributor to the particular Domain Specific
Queues, thus distributing the crawling to different
crawlers which leads the balancing of the crawling load.
4) Reliability: Multiple, independently working crawlers
increases the reliability of the whole system, as failure of
the single crawl worker will not affect the function
remaining crawl workers.
 We then look at RCrawler [10], which is specific
web crawler library in the R programming language. This
is a multithreaded, flexible, and powerful web crawler
that provides a suite of useful functions for web crawling
and web scraping.
 This paper [11] talks about deploying a web
crawler in a client-server model for an increase in
crawling performance. This other paper [12] also talks
about improving crawler performance but in a manner
as to improve the data collection aspect of the crawler. In

order to achieve this, they propose a distributed focused
crawler which has crawler scheduling and site ordering.
 In order to scale the crawler as the size of the
data it is crawling over increases, we need a scalable
platform. This paper [13] proposes that crawlers be
deployed in a cloud platform to provide the easy
scalability required.
 Now search engines do not depend on a single
but on multiple web crawlers that run in parallel to
complete the target. While functioning in parallel,
crawlers still face many challenging difficulties such as
overlapping, quality and network.[14] In distributed
crawling, multiple processes are used to crawl and
download pages from the Web.
 The paper by Mangala et. al. [15] tells us about
how one can design a crawler to give good response to
the query, how high quality data can be retrieved and
how to perform hidden content mining.

3. BACKGROUND
 A parallel crawler gives optimal results when we
need to search data in the internet today. Due to the vast
amount data being present, a crawler which runs only a
single process can no longer offer any meaningful results
in proper times. Coupled with the fact that crawlers have
the added task of delivering accurate results and not just
random walks, running these in parallel is the safest bet
moving forward. Therefore, the architecture being
presented in this paper uses a parallel, multi-threaded
model.

 The best crawlers also have highly optimized
architectures to give the best performance. The basic
architecture of a crawler is shown below.

Fig -1. Architecture of a basic parallel crawler

 In general, it is easy to build a slow crawler. The
main challenge is to build a high-performance system
which is both robust and efficient. In order to tackle that
problem, we propose an architecture as described below

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3

4. PROPOSED SYSTEM
We propose an architecture in this paper which

utilizes the multithreaded web crawler in a way that
behaves as a group of processes together working under
the same cluster. This architecture is able to achieve
remarkable fetching and parsing speeds in comparison
to its sequential counterparts where all these operations
are likely to happen in a form of sequence in which
individual components perform their parts and pass the
information to the next component.

The architecture being proposed can be

described as follows, with the following steps in the
crawling procedure to increase performance and to take
advantage of multi-threading.

1.The user is responsible for giving a target URL to the
application which is then communicated to the different
segments of the program at the same time.

2. One of the communications happens to indicate the
crawler regarding the type of the content and the related
information regarding what to fetch for the given URL
and the other communication happens for the query
parser which is responsible for analysing the exact
information from the URL given by the user.

3. Based on the related information first by the crawler
with the help of the multiple seed pages which is again a
multithreaded process in order to speed up the function
and the parts of the information available due to the
effort of Query parser multiple pages are downloaded at
the same time with the redundancy checking in place.

4.Several workers are then deployed in order to pass the
information in different websites and hyperlinks
provided in them to get the suitable content. This can be
easily achieved via multi-threading in order to maximise
performance by running one worker in one logical core.

5. The information is then passed for the storage into a
storage bucket which is a central repository for all the
information passed during the process

6.The user then is responsible for getting the information
from the storage bucket where the information is stored
and several queries can be performed on the information
to get the suitable data according to the requirement.

 The architecture proposed in the section above
is shown below.

Fig -2. Architecture of the proposed parallel multi-

threaded crawler.

4.1 Structure of the multi-threaded crawler

As can be seen from the architecture above, the main
part of this system is the crawler itself. The crawler is
structured as follows –

1. A root URL is given by the user along with their
query.

2. This URL is scraped for links contained within it.
3. The text of the webpages in each link is

extracted.
4. Each text is converted into its TF-IDF [16]

features.
5. Using these TF-IDF features of the webpages

and the original query, cosine similarity of each
is calculated.

6. The cosine similarity value is used as a priority
to order each link in a priority queue, thus
achieving a best-first search model.

As described in J. Ramos [16], the TF-IDF

features for the word t in the document d from the
document set D is calculated as follows -

 () () ()

where,

 () (())

 () (

 ()
)

Once we have our TF IDF score of the query and the
document as a whole, we perform cosine similarity

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4

calculation on it as shown.

 ()

| | | |

This cosine similarity index helps us identify

how close the document/webpage is to the original
query put forward by the user. Therefore, when the
results of the query are presented to the user, they are
done so in a priority queue, where the priority is the
cosine similarity index of each webpage/document.
Thus, we are also able to achieve a best first search.

5. RESULTS
 For the purposes of testing this proposed
architecture, we deployed this in code written in python,
though any programming language can be used to do the
same. The architecture was deployed in a physical
machine with the following specifications.

Hardware Specification
CPU: Intel Core i5-10210U
Sockets: 1
Cores: 4
Logical Processors: 8
Base Speed: 2.10 GHz RAM
Memory: 8 GB
RAM: SODIMM 2667 MHz

Software Environment
OS: Ubuntu 20.04.02 LTS
OS Type: 64-bit
Kernel: Linux
Kernel version: 5.8.0-53-generic

 The results are collated in the form of a table
showing the mean execution times in ms, showing the
number of threads assigned to each worker, and the
number of pages set as the limit to scrape.

Table -1. Comparison of execution times

worker
s/

work
1 2 4 8 16 32 64

100 2.18 2.06 1.71 1.69 1.5 2.01 2.02

500 14.62 6.5 5.49 4.58 5.49 3.71 4.63

1000 27.3 15.7 7.49 5.98
7.71

0
8.84 12.1

2500 50.62 32.5 20.9 16.0 16.3
19.3

2
28.7

 A visualization of the results is shown

Fig -3. Performance of different execution times under

different workloads

6. CONCLUSION
 As seen from the results above, the crawler was
able to crawl several thousand websites and give out the
data with just 8 threads. In a machine better suited for
scraping, with a higher number of logical processors, we
would achieve an even higher performance. This type of
crawler architecture overcomes the need for waiting for
each page to load before moving on the next one, as we
use a type of best first search, which guarantees the most
appropriate results first.

REFERENCES
[1] Kartik Kumar Perisetla, “Mutual Exclusion Principle
for Multithreaded Web Crawlers” International Journal of
Advanced Computer Science and Applications (IJACSA),
3(9), 2012.
[2] Zade, Pranali, and S. W. Mohod. "An Efficient Method
for Deep Web Crawler based on Accuracy." International
Journal on Future Revolution in Computer Science &
Communication Engineering 4.4 (2018): 393-399.
[3] Shrivastava, Vandana. "A methodical study of web
crawler." Vandana Shrivastava, Journal of Engineering
Research and Application 8.11 (2018): 01-08.
[4] Pooja, Dr Gundeep Tanwar. "Smart Three Phase
Crawler for Mining Deep Web Interfaces." International
Journal on Future Revolution in Computer Science &
Communication Engineering 4.4 (2018): 853-858.
[5] Komal, Dr. Ashutosh Dixit, "Design Issues in Web
Crawlers and Review of Parallel Crawlers", International
Journal of Science and Research (IJSR), Volume 5 Issue 6,
June 2016, 61 – 64
[6] Amudha, S., and M. Phil. "Web crawler for mining web
data." International Research Journal of Engineering and
Technology 3 (2017): 128-136.
[7] Chatterjee, Soumick, and Asoke Nath. "Auto-Explore
the Web–Web Crawler." International Journal of
Innovative Research in Computer and Communication
Engineering 5.4 (2017).
[8] Sun, Guang, Huanxin Xiang, and Shuanghu Li. "On
multi-thread crawler optimization for scalable text

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 10 | Oct 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5

searching." Journal on Big Data 1.2 (2019): 89.
[9] Tyagi, Nidhi, and Deepti Gupta. "A novel architecture
for domain specific parallel crawler." Department of
Computer Engineering, Shobhit University. Meerut,
India (2010).
[10] Khalil, Salim, and Mohamed Fakir. "RCrawler: An R
package for parallel web crawling and
scraping." SoftwareX 6 (2017): 98-106.
[11] Kausar, Md Abu, V. S. Dhaka, and Sanjeev Kumar
Singh. "Design of web crawler for the client-server
technology." Indian Journal of Science and
Technology 8.36 (2015): 1-7.
[12] Gunawan, Dani, Amalia Amalia, and Atras Najwan.
"Improving data collection on article clustering by using
distributed focused crawler." Data Science: Journal of
Computing and Applied Informatics 1.1 (2017): 1-12.
[13] ElAraby, M. E., et al. "Elastic Web crawler service-
oriented architecture over cloud computing." Arabian
Journal for Science and Engineering 43.12 (2018): 8111-
8126.
[14] Kausar, Md Abu, V. S. Dhaka, and Sanjeev Kumar
Singh. "Web crawler: a review." International Journal of
Computer Applications 63.2 (2013).
[15] Mangla, Sweety, and Geetanjali Gandhi. "Study of
Crawlers and Indexing Techniques in Hidden
Web." International Journal of Computer Science and
Mobile Computing 4.4 (2015): 598-606.
[16] Ramos, Juan. "Using tf-idf to determine word
relevance in document queries." Proceedings of the first
instructional conference on machine learning. Vol. 242.
No. 1. 2003.

