
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3876

Design and Implementation of a Self-Balancing Two-Wheeled Robot

Driven by a Feed-Forward Backpropagation Neural Network

Arunit Maity1, Sarthak Bhargava2

1B. Tech Student, School of Electronics Engineering (SENSE), VIT Vellore 632014, Tamil Nadu, India
2B. Tech Student, School of Electronics Engineering (SENSE), VIT Vellore 632014, Tamil Nadu, India

---***--

Abstract – This research paper reports the design,
construction and a novel control system for a two-wheeled
self-balancing robot. The system architecture comprises of a
pair of DC motors and an Arduino Uno R3 microcontroller
board, a 3-axis gyroscope and a 3-axis accelerometer
(employed for altitude determination). The constructed two-
wheeled robot is essentially the real-time model of an inverted
pendulum open-loop system which is inherently highly
unstable without feedback control and has nonlinear
dynamics. The proposed balancing algorithm consists of
training a feedforward neural network using the
backpropagation algorithm to learn to balance the bot
through supervised learning on the basis of a training routine
which runs at startup. In addition, the linear quadratic
estimation algorithm (LQE) along with a complementary filter
are used to compensate for gyro drifts. Our experimental
results show that the proposed feedforward neural network
balancing technique can learn to balance the bot within a
short span of time and that too with considerably lesser
oscillations about the equilibrium point as compared to the
standard PID controller, thereby increasing the system’s
elegance. Our designed bot is a compact and cost-effective
protype that showcases the efficiency and complex-learning
capability of artificial neural networks (ANNs).

Key Words: Two-Wheeled robot; Self-Balance control;
Proportional-Integral-Derivative Controller; Kalman
Filter; Arduino Uno R3; Digital Motion Processing (DMP);
Backpropagation Algorithm; Feedforward Neural
Network.

1. INTRODUCTION AND RELATED WORKS

Over the past decade, robots capable of motion have stepped
out of military and industrial avenues, and entered civilian
spaces such as hospitals, schools and ordinary homes.
although many of these robots for civil applications are
somewhat mechanically stable, like ‘Aibo’ the Sony robotic
dog, or four-wheeled intelligent vacuum cleaners, one that
every day on-lookers would find awe-inspiring is the Segway
personal transport. It is a mechanically unstable, two-wheel
self-balancing mode of transport that has seen deployment
for law-enforcement, tourism, and personal use. This vehicle
can be appropriately called a robot because in the absence of
the sensory capabilities and intelligent controls that
accompany each robot, the Segway can never stay upright.
While the Segway may have been a famous commercial

product, research into the control of such a mechanical
system has been quite divergent.

Besides the development of Segway, studies of two-wheel
self-balancing robots have been widely reported. For
example, JOE [1] and nBot [2] are both early versions
complete with inertia sensors, motor encoders and on-
vehicle microcontrollers. Since then, there has been active
research on the control design for such platforms, including
classical and linear multivariable control methods nonlinear
backstepping controls, PID controller, application of discrete
Kalman filters, fuzzy-neural control, Linear-quadratic
regulators (LQR) and combinations of the above [3][4]. Many
intelligence algorithms have been implemented to tackle the
equilibrium problem posed by wheeled inverted pendulums
such as fuzzy control [5][6], control schemes based on
support vector machines [7], operant conditioning theory
[8], etc.

The two-wheeled robot is an amalgamation of the wheeled
mobile robot and the inverted pendulum system [9]. It also
incorporates the concept of creating a vehicle for humans.
The inverted pendulum is a dynamically unstable and non-
linear open-loop system with a single-input, multi-output
system setting (SIMO) where the center of mass is above the
pivot point of the system. This system is therefore a classic
problem in dynamics and control theory and is commonly
used as a benchmark for testing control system techniques.
The wheeled inverted pendulum is not actuated on its own
and must be actively balanced in order to remain upright. It
uses gyroscopes and accelerometers to detect the inclination
of the vertical axis and in order to overcome the inclination,
the controller generates torque signals to each motor in
order to prevent the system from falling. It is a control
system model in which the object can be manipulated only
by adding additional load to it. Wheeled inverted pendulums
have thus become a novel challenge and implementing
balancing algorithms to solve their equilibrium problem
attract the interest of many researchers.

Although there are many research-works in this field, only a
minority have been directed to make clear comparisons
between standard control system techniques such as PID
controllers and LQR feedback controllers and the relatively
new artificial-intelligence based neural network controllers.
We attempt to do just that. Based on the dynamic theory, we
will analyze the self-balancing system, establish a
mathematical model, and explain the working of the neural

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3877

net in the most detailed and lucid fashion. Moreover, a
simulation will be performed, which demonstrates the
working and efficiency of the same.

2. CONSTRUCTION OF THE ROBOT

1. CHASIS: Our frame involves the use of acrylic sheets. We
have used metallic rods of diameter 3mm to hold our 3-
tiered structure in place. The top portion houses the
gyroscope sensor along with the 9V batteries. The middle
sheet contains the Arduino Uno R3 microcontroller board
and another 9V battery. Finally, the bottom layer contains
the driver motor controller and 2 DC geared motors.

2. MOTORS: The motors we have used are standard DC geared
motors which operate at 12V to give 300 rpm and generate
1.5 kg-cm of torque.

3. MOTOR CONTROLLER: We have used the L298N motor
controller which is dual H-bridge motor driver which allows
speed and direction control of two DC motors at the same
time. The module can drive DC motors that have voltages
between 5 and 35V, with a peak current up to 2A.

4. GY-521 MODULE: This measures the angle of the tilt of the
robot. A function is used to call the values of the same. The
GY- 521 module is a breakout board for the MPU-6050
MEMS (Microelectromechanical system) that features a 3-
axis gyroscope, a 3-axis accelerometer, a digital motion
processor (DMP), and a temperature sensor. The digital
motion processor can be used to process complex
algorithms directly on the board. Usually, the DMP
processes algorithms that turn the raw values from the
sensors into stable position data. The sensor values are
retrieved by using the I2C serial data bus, which requires
only two wires (SCL and SDA). Here, we used the MPU6050
Arduino library which consists of reverse-engineered
functions to utilize the DMP present on-board the MPU-
6050 to calculate yaw, pitch and roll.

5. ARDUINO UNO R3: Arduino Uno R3 is a microcontroller
board based on the ATmega328P (datasheet). It has 14
digital input/output pins (of which 6 can be used as PWM
outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB
connection, a power jack, an ICSP header and a reset
button.

6. JUMPER WIRES: Male to male and female to male wires.

Fig. 1: Schematic model for a wheeled inverted pendulum

Fig. 2: Front view of constructed robot

Fig. 3: Top view of constructed robot

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3878

Fig 4: Circuit Schematic

3. ALGORITHMS USED

3.1 PID CONTROLLER APPROACH

We explore two approaches to maintaining the upright
nature of the robot. The first method is using a PID
controller. The Proportional Integral Derivative controller
(PID) is a control loop feedback mechanism which is now
widely used in industrial control systems and a plethora of
other applications that require continuously modulated
control [10]. The PID controller continuously computes an
error value as the disparity between the desired setpoint
(SP) and the measured process variable (PV) and initiates a
correction on the basis of proportional, integral, and
derivative terms, denoted by P, I, and D respectively which
gives the controller its name. Technically, it maps accurate
and responsive correction to a control function. PID
comprises of three parts: (1). The proportional part is used
to directly control the magnitude of the response. If the value
of Kp is too high or too low, the system becomes unstable.
(2). The integral part is used to average past error and
accelerate the movement of the process towards the
setpoint. (3). The derivative part is to predict the error in the
future through previous error variations. The final control
value is calculated by simply adding these three terms
together. The formula is as follows:

(1)

Fig 5: PID Controller Block Diagram

Algorithm to adjust Kp, Ki and Kd values: -

 After setting the I and D terms to 0, we adjust the
value of P so that the robot begins to oscillate about
the mean position. P should be big enough for the
robot to move but not too large which would
hinder smooth movement.

 With P appropriately identified, I is increased so that
the robot accelerates faster when off balance. With
P and I properly adjusted, the robot should be able
to balance itself for at least a few seconds.

 Next, the value of D is decided so that the robot will
be able to move about its balanced position in a
gentler fashion. Also, there should not be any
significant overshoots.

 If the first attempt does not lead to satisfying results,
one should reset the PID values and repeat the
process above until you arrive at a satisfactory
result.

 While fine tuning, the PID values are confined to
neighboring values and its effects are observed in
practical situations

3.2 FEEDFORWARD NEURAL NET APPROACH

In our proposed approach, we employ a feedforward neural
network in order to control a two wheeled self-balancing robot.
The robot does not do anything additional to self-balancing,
there exists no method for directional control. Keeping in mind
the Arduino Uno's 2K SRAM constraint, the program uses a
neural net with a single input node, two hidden nodes and a
single output node. The program first uses a training routine
which takes only a few seconds to finish so it can be run every
time the robot is started. Here, the bot needs to be held upright
while the neural network routine gets trained using the
backpropagation algorithm. The input sensor values (tilt angle of
the robot) is mapped to a value between 0 and 1. This value is
sent to the neural network model which then returns an output
from the sigmoid activation layer which is between 0 and 1.
Finally, we map these output values to a useful value for the DC
motors, between -255 to 255 in this case.

Fig 6: Feedforward Neural Network Architecture

4. METHODOLOGY

In order to obtain information regarding the spatial
orientation of the robot, we make use of the Kalman filter,
which is also known as the Linear Quadratic Estimation
(LQR) algorithm in conjugation with the Complementary
filter in order to reverse-engineer the DMP (Digital Motion
Processing) algorithm of the GY-521 Breakout Board which
uses the InvenSense MPU-6050 6-Axis Accelerometer and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3879

Gyroscope Module. The DMP functions are called and used in
order to get precise and accurate values for the Yaw, Pitch
and Roll of our mechanically unstable system.

The Pitch value is then used in order to understand and
calculate the vertical tilt angle of the robot so that the robot
can then rectify its orientation. This is done by providing
Pulse-Width Modulated Signals (PWM) in order to make the
motors run slower or faster, depending on the tilt angle. The
PWM signals can be sent within a range of -255 to 255 and
thus a PID controller is used in order to compute the value to
be sent as PWM. Now, in order to calculate the PWM value we
need to give an input to the PID controller and a Setpoint or that
it can calculate the error (Setpoint – Input) and then give an
output which will ultimately reduce the error. Here we provide
the tilt angle of robot when held at vertical as the input. The
input tilt angle keeps changing depending on the surface on
which the robot is kept and thus we need to change the value in
the code.
However, in our neural net application none of these parameters
need to be set. We simply use the back-propagation algorithm
and incorporate the neural net with a single input node, two
hidden nodes and a single output node.

Instead of tinkering with all the values of Kp, Ki and Kd required
for the PID Controller, we simply call a training routine during
initialization or the robot during which the bot needs to be held
upright and steady. The bot feeds this vertical tilt angle as the
input angle to the training set and computes the error.

In this case, we are using the Sigmoid Activation Function for the
neural net. The graph for the function is as follows-

Fig. 7: Sigmoid Activation Function

The hyperparameters set for the neural net are as follows-

Parameter Value

Learning Rate 0.3

Momentum 0.9

Initial Weights 0.5

Success 0.0015

Sample Time (mS) 0.005

Loop Timer (mS) 4

Input Node 1

Hidden Nodes 3

Output Node 1

Table 1: Optimized Hyperparameter values of FNN

The parameter ‘Success’ has been given a value of 0.0015.
The error calculated as the difference in the required Set
Point (Vertical tilt angle) and the Current Angle (Real-Time
Tilt Angle) is supposed to be less than the value of success in
order to keep the robot upright and the neural net provides
the output required in order to do that. This output is then
linearly mapped onto the range of -255 to 255. This value is
then used as the magnitude of the PWM signal.

So greater the value given to the PWM signal, more is the
torque provided by the motor and thus the bot is able to
maintain its upright position.

5. RESULTS AND DISCUSSION

We employed both approaches on our constructed robot, in
order to compare and infer as to which algorithm worked
better.

The first approach was the PID Controller approach where
the following steps were taken-

 The desired setpoint was set as 6.10 (degrees from
the vertical).

 The value of Kp after extensive experimenting, was
set to 90 as it was optimal and made the bot
oscillate about the balance position.

 The value of Ki was set to 250 as it made the
balancing more efficient and provided more torque
to the motors at higher tilt angles.

 The value of Kd was set at 2.15 since any value
more than that made the robot jitter and any value
less than that made the robot fall.

The next approach was the Neural Net approach where the
following steps were taken-

 The desired setpoint was set as 6.10 (degrees from
the vertical).

 The value of Learning Rate was tinkered with, and it
was found that a value of 0.3 made the bot balance
perfectly without oscillating at high frequencies
and causing large deviations.

 A high learning rate made the output change
frequently and this caused the motors to
frequently change speed, thus making the robot
oscillate and jitter.

 The momentum and initial weights were set as 0.9
and 0.5 respectively based on hit and trial.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3880

 The Success value was kept as 0.0015 since all
values higher or lower to that caused a significant
change in the error calculation and caused the DMP
function to be called frequently, thus making
changes to the output more than required making
the robot jitter a lot.

Furthermore, we used the serial graph plotter present in
the Arduino IDE Software in order to visualize and analyze
the motor control signals under wheel synchronization in
Fig. 8. It can be clearly seen that the wheel synchronization
is effective.

Fig. 8: PWM Motor Control Signals

The Arduino IDE Software’s Serial Graph was also used in
order to plot a graph between the tilt angle and time passed.
These graphs were plotted for both the approaches and it can
be seen in Fig. 9 that stability with PID control is marginal.
Meanwhile, much more improved stability is obtained using
the Neural Net and the tilt angle deviates way less using the
Neural net.

Fig. 9: Experimentally obtained history of tilt angle: PID
controller (top), Neural Net (Bottom)

6. CONCLUSION

Neural Net approaches for self-balancing are not as widely
used as PID controllers, however based on our extensive
research we can conclude that the Feedforward Neural
Network was able to balance the robot much better than the
PID Controller. As seen from the results, the PID Controller
requires extensive tuning of the Kp, Ki and Kd values. These
values are specific to a system and are different for every

system. Thus, the same values cannot be used for another
robot. However, the parameters set in the neural net are
universal and thus this approach does not require any tuning
whatsoever. The neural net code simply needs to be uploaded
on to the Arduino Uno Microcontroller and the robot starts
balancing itself. In conclusion, the Neural Net approach is an
interesting and reliable way to balance the robot since it
makes the bot oscillate less around the balance point and
thus keeps the bot steady for a longer period of time.
Meanwhile, the PID controller works better when it is
subjected to manual disturbances/imbalances. When the bot
is provided with a slight push and caused to imbalance, the
PID controller is able to provide the higher torque required
and balances the bot but the Neural Net often fails to do so,
causing the robot to fall. In conclusion, we have successfully
constructed a compact and cost-effective two-wheeled self-
balancing robot using low-cost components. The self-
balancing challenge was tackled using two different
approaches, a fine-tuned PID controller and a 3-layered
feedforward neural network trained using backpropagation
algorithm and suitable comparisons were drawn between
them.

REFERENCES

[1] F. Grasser, A. D. Arrigo, and S. Colombi, “JOE: A mobile,

inverted pendulum,” IEEE Trans. Ind. Electron., vol. 49,
no. 1, pp. 107–114, Feb. 2002.

[2] http://www.geology.smu.edu/~dpa-www/robo/nbot/

[3] Nguyen Gia Minh Thao, Duong Hoai Nghia and Nguyen
Huu Phuc, "A PID backstepping controller for two-
wheeled self-balancing robot," International Forum on
Strategic Technology 2010, Ulsan, 2010, pp. 76-81, doi:
10.1109/IFOST.2010.5668001.

[4] W. An and Y. Li, "Simulation and control of a two-
wheeled self-balancing robot," 2013 IEEE International
Conference on Robotics and Biomimetics (ROBIO),
Shenzhen, 2013, pp. 456-461, doi:
10.1109/ROBIO.2013.6739501.

[5] Q. Yong, L Yanlong, Z Xizhe, and L. Ji, “Balance control of
two-wheeled self-balancing mobile robot based on TS
fuzzy model,” 2011 6th International Forum on Strategic
Technology (IFOST), pp.406,409, Aug 22–24, 2011.

[6] J. Wu, S. Jia, “T-S adaptive neural network fuzzy control
applied in two-wheeled self-balancing robot,” 2011 6th
International Forum on Strategic Technology (IFOST),
pp.1023, 1026, Aug 22–24, 2011.

[7] L. Jiang, M. Deng, and A. Inoue, “Support vector machine-
based two wheeled mobile robot motion control in noisy
environment”, J. of Systems and Control Engineering,
vol. 222, no. 7, pp. 733–743, 2008.

[8] J. Cai and X. Ruan, “Bionic autonomous learning control
of a two-wheeled self-balancing flexible robot,” J. of
Control Theory and Applications, vol. 9, no. 4, pp.521–
528, 2011..

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3881

[9] Kim, Y., Kim, S.H. & Kwak, Y.K. Dynamic Analysis of a
Nonholonomic Two-Wheeled Inverted Pendulum
Robot. J Intell Robot Syst 44, 25–46 (2005).
https://doi.org/10.1007/s10846-005-9022-4

[10] S. Cong and Y. Liang, “PID-like neural network nonlinear
adaptive control for uncertain multivariable motion
control system,” IEEE Trans. Ind. Electron., vol. 56, no.
10, pp. 3872–3879, Oct. 2009.

https://doi.org/10.1007/s10846-005-9022-4

