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Abstract - This paper presents a linear stability analysis 
for the Taylor-Dean flow of a viscous fluid between two 
concentric horizontal cylinders with a constant azimuthal 
pressure gradient, keeping the cylinders at different 
temperatures, when the inner cylinder is rotating and outer 
one is stationary.  Here, the ratio of representative pumping 
and rotation velocities 𝜷 and both positive and negative 
values of temperature gradient parameter N are considered, 
where N depends on the temperature differences       
between the inner and outer cylinder. The analytical 
solution of the eigen value problem is obtained by using the 
trigonometric series method, when the gap between the 
cylinders is narrow. The critical values of parameters a and 
T are computed, where a is the wave number and T is the 
Taylor number, determining the onset of stability from the 
obtained analytical expressions for the second and third 
approximations. The critical values of T obtained by the 
third approximation agree very well with the earlier results 
computed numerically by differential transform method 
using unit disturbance scheme along with shooting 
technique. This clearly indicates that for the better result 
one should obtain the numerical values by taking more 
terms in approximation. Also, the amplitude of the radial 
velocity and the cell-patterns are shown on the graphs for 
different values of the parameters. 
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Nomenclature 
 a            Dimensionless wave number 
 d            Difference between two radii of the cylinders 
         Radii of inner and outer cylinders respectively 
 r, θ, z    Cylindrical co-ordinates 
        Velocity components in r,   and z directions                
respectively 
     Taylor number 
 Pr  Prandtl number 
 N             Radial temperature gradient         
            Temperature of inner and outer cylinder                    
respectively 
               The average velocity due to rotation 
              The average velocity due to pumping. 

 
 

Greek symbols 
α        Thermal diffusivity of the fluid  
          Ratio of the pumping and rotational velocity 
η          Ratio of radii (     ) 
      Angular velocity of the inner and outer cylinders              
respectively 
μ           Ratio of angular velocities (     ) 
ρ          Density of fluid 
λ           Wave number of disturbance 
             Kinematic viscosity. 

1. INTRODUCTION  
 
The simplest example of a steady-circular flow of a viscous 
fluid between two rotating concentric cylinders is the 
Taylor-Couetee flow for which the laminar basic state is 
the circular Couette flow. In the absence of viscosity, the 
first criterion of stability was given by Rayliegh  [1920]. 
For the case of viscous Couetee flow, theoretical and 
experimental investigations were performed for first time 
by Taylor [1923] for the case of small gap d (       ) 
between the rotating cylinders. In Taylor problem, the 
stability of the fluid motion is due to the rotational velocity 
of the cylinders. If both the concentric cylinders are 
stationary, and the flow is due to the pressure gradient 
acting round the curved channel, then the effect of small 
disturbances on the stability of such a motion, was first 
studied by Dean [1928], known as the Dean problem. 
Later, Reid [1958] and Hammerlin [1958] studied the 
Dean problem for the narrow-gap case, whereas Walowit 
et al. [1964] studied it for the wide gap case. 
  
When rotation and an azimuthal pressure gradient are 
both present, the problem of instability has some 
dinstictive feature which are absent from either Taylor or 
Dean Instability. This problem is known as Taylor-Dean 
problem, is the one discovered by Brewster & Nissan 
[1958] and by Brewster et al. [1959]. The same problem 
was further studied by DiPrima [1955, 1959], Meister 
[1962], Kruzweg [1963], Hughes and Reid [1964] and 
Raney and Chang [1971] for different physical 
conditions.In all these papers, it was basically assumed 
that the two cylinders are at the same temperature and as 
a result of which radial temperature gradient does not 
exist. However, in many chemical, electrical and 
mechanical engineering applications the temperature of 
two cylinders cannot remain the same. Thus, due to the 
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change in the temperature of two cylinders, there exist a 
temperature gradient and the stability of the fluid flow is 
affected by the temperature gradient. Hence, 
Chandrashekhar [1954] studied the effects of the presence 
of a radial temperature gradient on the onset of instability 
in the narrow-gap case, Walowit et al. [1964] under wide 
gap approximation and experimentally by Becker and 
kaye [1962].  
 
Further, the effect of radial temperature gradient on the 
stability of Dean flow was investigated by Ali et al. [1998] 
under narrow gap approximation and the effect of radial 
temperature gradient on the circular Couette flow was 
analysed by Mutabazi et al. [2001]. Chang [2003] 
investigated the linear stability of Taylor–Dean flow 
between porous concentric rotating cylinders in the 
presence of radial flow. The Taylor–Dean flow through a 
curved duct of square cross section, in which walls of the 
duct except the outer wall rotate around the center of 
curvature and an azimuthal pressure gradient was 
imposed, was analyzed by Yamamoto et al. [2004]. 
 
Later, Yamamoto et al. [2006] investigated experimentally, 
the secondary flow in a curved duct of square cross 
section, using a visualization method. After that, Soleimani 
and Sadeghy [2011] investigated numerically the stability 
of Bingham fluids in Taylor–Dean flow between two 
concentric cylinders at arbitrary gap spacing. Their results 
showed that the yield stress always has a stabilizing effect 
on the Taylor–Dean flow. Centrifugal instability of 
Bingham fluids was analyzed in Taylor–Dean flow when 
the gap size was large compared to the cylinder radii by 
Soleimani and Sadeghy [2011].The three dimensional 
linear stability analysis of Couette flow between two axial 
cylinders for shear-thinning fluids with and without yield 
stress was performed by Alibenyahia et al. [2012]. 
 
Recently, Mahapatra et al. [2013] studied the effect of 
radial temperature gradient on the stability of Taylor-
Dean flow between two arbitrarily spaced concentric 
cylinders. They emphasized to the point if the two neutral 
stability curves crosses at some point for varying the 
radial temperature gradient parameter for given values of 
the ratio of pumping and rotation velocities of the 
cylinders. Stability of narrow-gap Taylor-Dean flow with 
radial heating is studied by Deka and Paul [2013]. In this 
paper we study the stability of narrow-gap Taylor-Dean 
flow, i.e. a viscous flow between concentric horizontal 
cylinders with a constant azimuthal pressure gradient, 
keeping the cylinders at different temperatures, when the 
inner cylinder is rotating and outer one is stationary. We 
have solved this problem by using the Trigonometric 
series method and the results are compared with those 
obtained by Deka and Paul [2013]. Also, the amplitude of 
the radial velocity and the cell-pattern are shown on 
graphs for different values of the parameters. 

 

1. Mathematical Analysis 
 
Consider the flow of an incompressible viscous fluid 
between two concentric horizontal cylinders of radii    

and    (  , radius of the inner cylinder;   , radius of the 
outer cylinder), when the inner cylinder is rotating while 
the outer one is stationary, assuming that the inner and 
outer cylinders are maintained at two different 
temperatures    and    respectively and flow is due to a 
constant azimuthal pressure gradient.  

 

Fig.1. Schematic of the Tayor-Dean system illustrating the 
Taylor-Dean flow 

Assuming stationary marginal state, the following 
differential equations have been obtained to govern the 
stability of Taylor-Dean flow of an incompressible viscous 
flow in a narrow-gap annular-space (Deka and Paul 
[2013]): 
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 According to Geometric series method, we take a sine 
series for   in order to satisfy the boundary conditions 
given by Eq. (4) as follows: 
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 Substituting Eq. (6) in Eq. (3) and then with the help of Eq. 
(2) and (3), we obtain the value of  . Using these values of 
 and   in Eq. (1), we have obtained the general solution 
for u as follows: 
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By inserting the mathematical expressions of  and u from 
Eqs. (6) and (7) respectively, in Eq. (3), we have, 
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 Multiplying Eq. (9) by    (   ) and then 
integrating over the range 0    , we obtain a system of 
linear homogeneous equations for the constants and the 
requirement that these constants are to all zero leads to the 
following secular equation: 
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2. Results and Discussion 
 
Table 1.1 Values of critical Taylor and wave numbers for 

different values of 𝜷 for the case N = 0 

 Branch I 

𝜷       
    

    

1.0 3.0999 2432.09 2433.80 2433.85 

0.0 3.126 3385.86 3389.84 3389.84 

-1.0 3.233 5416.22 5416.80 5416.93 

-3.0 6.418 40940.02 40941.43 40942.82 

-3.25 6.959 51244.99 51246.66 51246.74 

-3.5 7.493 62879.15 62880.15 62880.16 

-3.6 7.768 68001.16 68002.17 68002.17 

-3.65 

 

7.974 70785.82 70785.83 70785.84 

-3.666 8.061 71762.23 71762.99 71763.24 

-3.667 8.064 

 

71787.11 71788.12 71787.12 

-3.7 8.283 

 

 

73844.88 73846.66 73845.85 

 

Table 1.2 Values of critical Taylor and wave numbers for 
different values of 𝜷 for the case N = 0 

 Branch II 

𝜷       
    

    

-3.65 

 

5.0311 76362.77 76364.8

8 

76364.8

9 -3.666 5.407 71765.35 71766.2

0 

71766.3

5 
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-3.667 5.413 71615.66 71618.3

9 

71618.3

9 -3.7 5.700 66653.66 66654.7

7 

66654.7

7 -3.75 5.727 61752.22 61753.2

0 

61753.2

0 -3.8 5.697 57781.14 57782.1

6 

57782.1

5 -3.9 5.630 511138.7

0 

51140.8

8 

51140.8

9 -4.0 5.570 45634.88 45634.8

9 

45634.8

9  
Table 2.1 Values of     and     for different values of 

N at           
 Branch I 

N       
    

    

-1.0 7.541 81934.00 81935.08 81935.09 

-0.9 7.529 80589.28 80591.22 80590.28 

-0.8 7.521 79288.18 79290.11 79290.10 

-0.7 7.513 78035.44 78036.44 78036.49 

-0.6 7.508 76831.22 76832.22 76832.29 

-0.5 7.509 75684.30 75684.35 75684.33
74602.98 -0.4 7.520 74601.99 74602.99 74602.98 

-0.3 7.550 73609.66 73611.88 73610.81 

-0.2 7.625 72749.77 72751.66 72751.66 

-0.1 7.788 72104.33 72104.44 72104.34 

0.0 8.059 71762.16 71763.17 71763.17 

0.1 8.401 71744.24 71745.88 71746.24 

0.2 8.469 71802.85 71803.85 71803.86 

 
Table 2.2 Values of     and     for different values of 

N at           
 

 Branch II 

N       
    

    

-0.1 5.352 76824.12 76825.11 76825.13 

0.0 5.405 71764.73 71766.77 71766.73 

0.1 5.533 66414.00 66617.09 66417.10 

0.2 5.627 61375.86 61377.99 61378.87 

 

The numerical value of     computed from Eq. (10) 
corresponding to the second and third approximations are 
listed in Table 1 for different values of 𝜷 for the case N = 0 
and in Table 2 for different values of N at            In 
these tables          represent the numerical values 
corresponding to the second and third approximations, 
while     is the values obtained by Deka and Paul [2013]. 
From these tables, we found that the values of      
obtained by the third approximation agree very well with 
the values obtained numerically by Deka and Paul [2013] 
using the shooting method. From Table 1, we observe that 
for some fix value of N as we increase the value of 𝜷 the 
numerical values of      decrease i.e. it destabilizes the 
flow. 

Table 2 presents the effect of radial temperature gradient 
parameter N on the critical wave number and Taylor 
number. We observe that for some fix value of 𝜷, when N 
is –ve (i.e the temperature of inner cylinder is higher than 
that of outer cylinder), as the temperature of inner 
cylinder increases the numerical values of      increases 
i.e. it stabilizes the channel flow and when N is +ve (i.e the 
temperature of outer cylinder is higher than that of inner 
cylinder), as N increases the numerical values of     
drcreases i.e. it destabilizes the channel flow.  
 
Other interesting phenomenon is to know the behaviour of 
the amplitude of the radial velocity and the corresponding 
cell-patterns. So, for a set of values of     and    , the 

values of    
( )

   
( )

,    
( )

   
( )

 are determined from Eq. 

(4). The eigenfunctions thus obtained are normalised so 
that the amplitude of the radial component of the velocity 
perturbation is unity. These eigenfunctions u(x) and the 
corresponding cell-pattern for the stream function   = 
u(x)cos (  z) at the onset of instability for different values 
of   and N are shown in Figs. 2-6. 

In Fig. 2, the cell patterns are shown for +ve values of N 
(for       and      ) at 𝜷 = 1.0. The most important 
conclusion we have from these figures is that as we 
increase the +ve value of N, the cells are shifted towards 
the inner cylinder. Physically, it is true because the 
convection currents are moving from the outer to the 
inner cylinder; thereby the left-handed edges of the cells 
start to become closer toward the innermost cell. Also the 
left-handed edge of the innermost cell is straightened and 
the corners are formed at the upper and lower ends of the 
innermost edge of the cell, and if the temperature is raised 
further such that the value of N increase beyond some 
particular value of N, the cells will start breaking through 
corners, and this confirms the destabilization of flow as N 
increases. 
 
In Fig. 3, the cell patterns are shown for -ve values of N 
(for        and       ) at 𝜷 = 1.0. From these 
figures we found that when the temperature of inner 
cylinder is raised such that N changes from      to       
the cells have shifted towards the outer cylinder. 
Physically it is true because the convection currents are 
moving from the inner to the outer cylinder; thereby the 
right-handed edges of the cells start to become closer 
toward the outermost cell. Also the right-handed edge of 
the outermost cell is straightened and the corners are 
formed at the upper and lower ends of the outermost edge 
of the cell, and if the temperature of inner cylinder is 
raised further, the cells will start breaking through 
corners, and this confirms the destabilization of flow. 
 
In Fig. 4, the cell patterns are shown for 𝜷 = 1.0, -1.0 at 
constant N= -0.4. From these figures we found that the 
cells have shifted towards the outer cylinder with increase 
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in the value of 𝜷. This confirms the destabilization of flow 
as we increase the value of 𝜷. 
 
In Fig. 5 and Fig. 6 u(x) is shown for 𝜷 = 1.0, 0.0 and -0.1 
corresponding to positive and negative values of N 
respectively. From these figures we find that for 𝜷 = 1.0, 
the maximum of u(x) shifts toward the outer cylinder as 
compared to the case of     , whereas for         the 
maximum of u(x) shifts toward the inner cylinder. From 
Fig. 5 we observe that as we increase the positive value of 
N, the maximum value of u(x) shifted toward the inner 
cylinder, whereas in the case when N is negative (Fig. 6), 
as we increase the negative the value of N, the maximum 
value of u(x) shifted towards the outer cylinder. 
 
Fig.2. Comparison of the cell pattern at the onset of instability 
for N = 0.1 (shown by continuous curve) and N = 0.2(shown by 

broken curve) at constant 𝜷 = 1.0. 

 

 

Fig.3. Comparison of the cell pattern at the onset of instability 
for N = -0.1 (shown by continuous curve) and N = -0.2(shown 

by broken curve) at constant 𝜷 = 1.0. 

 

 

 

 

Fig.4. Comparison of the cell pattern at the onset of instability 

for 𝜷 = 1.0 (shown by continuous curve) and 𝜷 = -1.0(shown by 
broken curve) at constant N = -0.4. 

 

 
Fig.5. The radial eigenfunction u(x) for N = 0.1 (shown by broken 
curve) and for N =0.2 (shown by continuous curve) for different 

values of 𝜷. 

 

 
Fig.6. The radial eigenfunction u(x) for N = - 0.2 (shown by broken 
curve) and for N = - 0.1 (shown by continuous curve) for different 

values of 𝜷. 
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3. CONCLUSIONS 

 The stability of the flow of a Newtonian viscous liquid 

between two coaxial horizontal cylinders has been 

investigated, when the inner one is rotating and the 

outer one is stationary, in the presence of a constant 

azimuthal pressure gradient, keeping the two cylinders 

at different temperatures. The following conditions 

have been obtained from the analysis:- 

(1) When N is positive i.e. outer cylinder is at higher 

temperature than the inner cylinder, the 

maximum value of u(x) shifted more and more 

toward the outer cylinder as we increase the 

value of N. 

(2) When N is negative i.e. inner cylinder is at higher 

temperature than the outer cylinder, the 

maximum value of u(x) shifted more and more 

toward the inner cylinder as we increase the 

temperature of inner cylinder. 

(3) When 𝜷 is positive, the maximum of u(x) shifts 

toward the outer cylinder as compared to the case 

of     , whereas for negative values of   the 

maximum of u(x) shifts toward the inner cylinder. 

(4) For some fix value of 𝜷, as we increase the +ve 

value of N then the cells are shifted towards the 

inner cylinder and as we increase the –ve value of 

N then the cells are shifted towards the outer 

cylinder. 

(5)  For some fix value of N, as the value of 𝜷 increase 

then the cells start shifted towards the outer 

cylinder. 

(6) The channel flow is more and more stable when 𝜷 

and N both are negative. 
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