
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 09 | Sep 2020                 www.irjet.net                                                                       p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 2830 

   Image Chooser using MVVM and Coroutines 

Rahul Yadav1, Ruchi Rautela2 

1Student, Vivekanand Education Society’s Institute of Technology, Mumbai 
2Assistant Professor, Dept. of MCA, Vivekanand Education Society’s Institute of Technology, Mumbai 

----------------------------------------------------------------------***---------------------------------------------------------------------

Abstract -  Image choosing is very common behaviour in 
android app development and there are various ways to do 
this but in very clean and performance efficient. To solve 
this problem, the model is developed for image choosing 
using android’s own Model View ViewModel(MVVM) design 
pattern and coroutines for more efficient and better 
performance. This model will show all the images present in 
the user’s android phone and show it in grid and give the 
image's physical address where it is stored in the android 
phone. This model is done with the help of coroutines and 
MVVM and written in Kotlin programming language. 
 
Key Words:  Model View ViewModel(MVVM), Coroutines, 
Image Chooser, Kotlin. 
 

1. INTRODUCTION  
 
 While developing android apps it is a very common use 
case where users need to upload images to the server with 
their android phone. And there are different-different 
ways by which you can tackle this problem but in most 
cases what happens is the user has to go out of the app to 
select the images or the app freezes for a while until the 
user chooses which is memory consuming. There is 
another way to do this where you can load data on a 
different thread and show it in the app only with help of 
MVVM and Coroutines. 

So in this model with the help of MVVM we developed a 
very nice and understandable model and with help of 
coroutines which will help to boost the performance. 

2. Technology Used 
 
Kotlin is nowadays an official programming language for 
Android Development by Google. Before Kotlin, Java was 
the official language for android development but due its 
concise and ability to write more code in less lines it's now 
the official programming language for android 
development and now it also has the support of 
Coroutines which is very useful in asynchronous 
programming. I have used libraries like LiveData, 
ViewModel, Coroutines,Material Design and Glide.  

Fetching all the images from the user's android phone is 
very essential for showing it in the grid layout to the user. 
So to fetch the data from the android phone I have used 
the MediaStore class of android SDK. And arranged it in 
descending order. And for better performance I have used 
Coroutines which will help us to fetch data on another 
thread rather than the main thread on which app is 
running. Because if I fetch data on the main UI thread then 

it will freeze the UI which is not a good scenario where 
users can not use the app. 

LiveData is a library provided by Google which will 
observe the changes on the variable. It is very helpful here 
because now we don’t have to look for the images, because 
of livedata we have to just observe the variable where we 
are storing all the images address and it will automatically 
get notified when anything changes in that variable. So by 
this way we will put all the images which we get using 
Coroutines on another thread and put it in an variable and 
we will observe that variable where we want to show the 
images. 

Now there is one more concern of area in the android 
development is configuration changes or screen 
orientation. When any configuration changes happen then 
Android recreates its activity. So to tackle this kind of 
situation we will use the android ViewModel library. What 
ViewModel does is it retains the configuration changes in 
the android app. So to leverage this functionality we will 
put aur LiveData variable in ViewModel. If we don’t put 
LiveData in ViewModel then it will load data every time 
anyone rotates the screen of the app where every time it 
will fetch the image from the android phone. 

For loading images on the UI screen we will use 
RecyclerView. Now to load images into the recyclerview 
from their image location we have used Glide library. Glide 
is a very fast and easy library to load the images. 

To complete this model we have used the Model View 
ViewModel(MVVM) architecture pattern. Where in Model 
we basically store the image address, in ViewModel we 
load the images and in View we show the images on the UI 
screen. And when someone selects any image then with 
the help of LiveData and ViewModel it returns the image 
address. 

 3. Proposed Solution 

In other models what users generally do is in order to 
select the image they go out of the app in gallery or any 
other third party app to select the images by doing this 
user lose time over there and there will also be more click 
events which degrade the User Experience. 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 09 | Sep 2020                 www.irjet.net                                                                       p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 2831 

 
 
With the use of our model images can be selected quickly 
and with great experience. Users can also select multiple 
images. And it will reduce the click events and improve the 
User Experience. 
 

 
 
4. Implementation Elaboration 
       
This model uses MediaStore class from the Android SDk to 
fetch all the images from the android phone. Then we used 
Coroutines to load images on the different thread which 
will not disturb the main UI thread  and it also improves 
the performance of the app. And LiveData to load data on 
the UI when it arrives.  
 
By using the ViewModel approach we make sure the app 
did not lose the data on screen rotation. And then we use 
RecyclerView to show the image in the grid format. And to 
load images into the UI we have used Glide. 
 

4.1 Steps in Technique 
 
   Model goes through various phases like Coroutines, 
LiveData, ViewModel, RecyclerView, Glide. 
 
Consider an Example:- Users want to upload 2-3 images 
from their android phone to the server. 
Then the process goes like as below:- 
 
4.1.1 Load Images 
Here we will first ask for read storage permission to the 
user. Once a user allows that permission then with the 
help of MediaStore class load all the image addresses. 
Since the user’s phone can have many images which will 
take more time to fetch all those images. And if we load all 
the images on the main thread then it will take more time 
and freeze the app so it is a better option to execute this 

operation on another thread rather than main thread by 
doing this we will maintain the app performance. 
 
4.1.2 Design Model View ViewModel pattern 
Now we have fetched all the image addresses now the next 
step is wrap all the data in LiveData. We will use live data 
because with the help of live data it will be very easy to get 
the image addresses. To do that we have to just load all the 
images into the live data variable and observe that 
variable into the UI. So when anything changes in the live 
data variable then it will notify us automatically. 
 
Now to complete the MVVM architecture  we have to 
create a ViewModel class and define that livedata variable 
in that class only so that if any configuration changes 
occur then the data won’t get fetched every time. 
 
4.1.3 Show Images 
So we have now fetched all the image addresses in the 
livedata variable. Now it is the time to observe that live 
data in the activity. To show images in the grid view we 
will use RecyclerView in the layout. And to load images 
from image addresses we will use Glide. 
 

4.1.4 Return Image Address 
Now when the user clicks on the image then with the help 
of live data we will notify the user with the selected image 
address. 
 
4.2 Evaluation 
With the help of this model we reduce the click event by 
almost 50% and also reduce the time consumption by 40 
percent. 
 
For some cases where there are a lot of images in the 
android phone then the time consumption will be around 
20 percent. 
 

5. Conclusions 
 
 With the use of this model, we have produced a good 
result for Image chooser, We can use it in the gallery 
application also. 
 
With the help of this model, the Image Chooser model 
system has been improved to best standards still there is a 
gap for improvement. 
 
For time being we just have worked on the reducing click 
event, there can be future expansion.  
 

REFERENCES 
 
[1] https://kotlinlang.org/docs/reference/  

[2] https://developer.android.com/guide 

 
 


