
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2147

ASYNCHRONOUS FIFO DESIGN USING VERILOG

Lincy D.F1, S.Thenappan2

1P.G. Scholar in VLSI DESIGN, Electronics and Communication Engineering Department,
2Ass.Professor, Electronics and Communication Engineering Department
1, 2 GNANAMANI COLLEGE OF TECHNOLOGY, NAMAKKAL, TAMILNADU.

---***--
Abstract - FIFO is an approach for handling program work
requests from queues or stacks so that the oldest request is
handled first. In hardware, it is either an array of flops or
read/write memory that stores data from one clock domain
and on request supplies the same data to other clock domains
following FIFO logic. An improved technique for FIFO design is
to perform asynchronous comparisons between the FIFO write
and read pointers that are generated in clock domains and
asynchronous to each other. The asynchronous FIFO pointer
comparison technique uses fewer synchronization flip-flops to
build the FIFO. This method requires additional techniques to
correctly synthesize and analyse the design, which are detailed
in this paper. To increase the speed of the FIFO, this design
uses combined binary/Gray counters that take advantage of
the built-in binary ripple carry logic.

Key Words: Asynchronous FIFO, FIFO Design, Full and
Empty Deduction

1. INTRODUCTION

FIFO Using Different Read and Write Logics Design where
data values are written sequentially into a FIFO buffer using
one clock domain, and the data values are sequentially read
from the same FIFO buffer using another clock domain,
where the two clock domains are asynchronous to each
other. One common technique for designing an
asynchronous FIFO is to use Gray code pointers that are
synchronized into the opposite clock domain before
generating synchronous FIFO full or empty status signals. An
interesting and different approach to FIFO full and empty
generation is to do an asynchronous comparison of the
pointers and then asynchronously set the full or empty
status bits.

1.1 Full and Empty Deductions

As with any FIFO design, correct implementation of full
and empty is the most difficult part of the design. Therefore,
something else has to distinguish between full and empty.
The one described is that divides the address space into four
quadrants and decodes the two MSBs of the two counters to
determine whether the FIFO was going full or going empty at
the time the two pointers became equal.

FIFO is going full because the wptr trails the rptr by one
quadrant If the write pointer is one quadrant behind the read

pointer, this indicates a "possibly going full" situation as
shown. When this condition occurs, the direction latch is set.

Fig -1: FIFO is going empty because the rptr trails the wptr

by one quadrant

Fig -2: FIFO is going full because the wptr trails the rptr by

one quadrant

If the write pointer is one quadrant ahead of the read pointer,
this indicates a "possibly going empty" situation as shown.
When this condition occurs, the direction latch is cleared.

Fig -3: FIFO is going full because the wptr trails the rptr by

one quadrant

When the FIFO is reset the direction latch is also cleared to
indicate that the FIFO “is going empty”. Setting and resetting
the direction latch is not timing-critical, and the direction

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2148

latch eliminates the ambiguity of the address identity
decoder. The Xilinx FPGA logic to implement the decoding of
the two wptrMSBs and the two rptrMSBs is easily
implemented as two 4-input look-up tables. The second, and
more difficult, problem stems from the asynchronous nature
of the write and read clocks. Comparing two counters that are
clocked asynchronously can lead to unreliable decoding
spikes when either or both counters change multiple bits
more or less simultaneously. The solution described in this
paper uses a Gray count sequence, where only one bit
changes from any count to the next. Any decoder or
comparator will then switch only from one valid output to the
next one, with no danger of spurious decoding glitches.

1.2 FIFO2.v

This is the top-level wrapper-module that includes all clock
domains. The top module is only used as a wrapper to
instantiate all of the other FIFO modules used in the design. If
this FIFO is used as part of a larger ASIC or FPGA design, this
top-level wrapper would probably be discarded to permit
grouping of the other FIFO modules into their respective
clock domains for improved synthesis and static timing
analysis.

1.3 FIFOmem.v

This is the FIFO memory buffer that is accessed by both the
write and read clock domains. This buffer is most likely an
instantiated, synchronous dual-port RAM. Other memory
styles can be adapted to function as the FIFO buffer.

1.4 async_cmp.v

This is an asynchronous pointer-comparison module that is
used to generate signals that control assertion of the
asynchronous “full” and “empty” status bits. This module only
contains combinational comparison logic. No sequential logic
is included in this module.

1.5 rptr_empty.v

This module is mostly synchronous to the read-clock domain
and contains the FIFO read pointer and empty-flag logic.
Assertion of the aempty_n signal (an input to this module) is
synchronous to the rclk- domain, since aempty_n can only be
asserted when the rptr incremented, but de-assertion of the
aempty_n signal happens when the wptr increments, which is
asynchronous to rclk.

1.6 wptr_full.v

This module is mostly synchronous to the write-clock domain
and contains the FIFO write pointer and full-flag logic.
Assertion of the afull_nsignal (an input to this module) is
synchronous to the wclk-domain, since afull_ncan only be

asserted when the wptrincremented (and wrst_n), but de-
assertion of the afull_nsignal happens when the
rptrincrements, which is asynchronous to wclk.

1.7 Asynchronous Generation of Full And Empty

In the async_cmp shown is aempty_n and afull_n are the
asynchronously decoded signals. The aempty_n signal is
asserted on the rising edge of an rclk, but is de-asserted on
the rising edge of a wclk. Similarly, the afull_n signal is
asserted on a wclk and removed on an rclk. The empty signal
will be used to stop the next read operation, and the leading
edge of aempty_n is properly synchronous with the read
clock, but the railing edge needs to be synchronized to the
read clock. This is done in a two-stage synchronizer that
generates r_empty. The w_full signal is generated in the
symmetrically equivalent way.

Fig -4: Asynchronous pointer comparison to assert full and

empty

1.8 Resetting the FIFO

The first FIFO event of interest takes place on a FIFO-reset
operation. When the FIFO is reset, four important things
happen within the async_cmp module and accompanying full
and empty synchronizers of the wptr_full and rptr_empty
modules (the connections between the async_cmp, wptr_full
and rptr_empty modules are shown.

1. The reset signal directly clears the w_fullflag. The r_emptyf
lag is not cleared by a reset.
2. The reset signal clears both FIFO pointers, so the pointer
comparator asserts that the pointers are equal.
3. The reset clears the direction bit.
4. With the pointers equal and the direction bit cleared, the
empty_n bit is asserted, which pre-sets the r_emptyflag.

1.9 Parallel-In, Parallel-Out, Universal Shift
Register

The purpose of the parallel-in/ parallel-out shift register
is to take in parallel data, shift it, then output it as shown
below. A universal shift register is a do-everything device in
addition to the parallel-in/ parallel-out function.

We apply four bit of data to a parallel-in/ parallel-out shift

register at DA DB DC DD. The mode control, which may be

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2149

multiple inputs, controls parallel loading vs shifting. The
mode control may also control the direction of shifting in
some real devices. The data will be shifted one bit position
for each clock pulse. The shifted data is available at the
outputs QA QB QC QD.

Fig -5: Parallel-in, Parallel-out Shift Register with 4-Stages

The "data in" and "data out" are provided for cascading of
multiple stages. Though, above, we can only cascade data for
right shifting. We could accommodate cascading of left-shift
data by adding a pair of left pointing signals, "data in" and
"data out", above. The internal details of a right shifting
parallel-in/ parallel-out shift register are shown below. The
tri-state buffers are not strictly necessary to the parallel-in/
parallel-out shift register, but are part of the real- world
device shown below. The 74LS395 so closely matches our
concept of a hypothetical right shifting parallel-in/ parallel-
out shift register that we use an overly simplified version of
the data sheet details above. LD/SH' controls the AND-OR
multiplexer at the data input to the FF's. If LD/SH'=1, the
upper four AND gates are enabled allowing application of
parallel inputs DA DB DC DD to the four FF data inputs. Note
the inverter bubble at the clock input of the four FFs. This
indicates that the 74LS395 clocks data on the negative going
clock, which is the high to low transition. The four bits of
data will be clocked in parallel from DA DB DC DD to QA QB
QC QD at the next negative going clock. In this "real part", OC'
must be low if the data needs to be available at the actual
output pins as opposed to only on the internal FFs.

Fig -6: Parallel-in, Parallel-out Shift Register with tri-

state Output

The previously loaded data may be shifted right by one bit
position if LD/SH'=0 for the succeeding negative going clock
edges. Four clocks would shift the data entirely out of our 4-
bit shift register. The data would be lost unless our device
was cascaded from QD' to SER of another device.

Fig -7: Parallel-in, Parallel-out Shift Register

Above, a data pattern is presented to inputs DA DB DC DD.

The pattern is loaded to QA QB QC QD . Then it is shifted one
bit to the right. The incoming data is indicated by X, meaning
we do no know what it is. If the input (SER) were grounded,
for example, we would know what data (0) was shifted in.
Also shown, is right shifting by two positions, requiring two
clocks.

Fig -8: Shift Right

The above figure serves as a reference for the hardware

involved in right shifting of data. It is too simple to even
bother with this figure, except for comparison to more
complex figures to follow.

Right shifting of data is provided above for reference to

the previous right shifter.

Fig -9: Shift Left

If we need to shift left, the FFs need to be rewired.

Compare to the previous right shifter. Also, SI and SO have
been reversed. SI shifts to QC. QC shifts to QB. QB shifts to
QA. QA leaves on the SO connection, where it could cascade
to another shifter SI.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2150

Fig -10: Shift Left/Right, Right Action

What we have above is a hypothetical shift register

capable of shifting either direction under the control of L'/R.
It is setup with L'/R=1 to shift the normal direction, right.
L'/R=1 enables the multiplexer AND gates labelled R.

Data shifts in at SR, to QA, to QB, to QC, where it leaves at

SR cascade. This pin could drive SR of another device to the
right. What if we change L'/R to L'/R=0?

Fig -11: Shift Left/Right Register, Left Action

With L'/R=0, the multiplexer AND gates labelled L are

enabled, yielding a path, shown by the arrows, the same as
the above "shift left" figure. Data shifts in at SL, to QC, to QB,
to QA, where it leaves at SL cascade. This pin could drive SL
of another device to the left. The prime virtue of the above
two figures illustrating the "shift left/ right register" is
simplicity. The operation of the left right control L'/R=0 is
easy to follow. A commercial part needs the parallel data
loading implied by the section title. This appears in the figure
below. Now that we can shift both left and right via L'/R, let
us add SH/LD', shift/ load, and the AND gates labelled "load"
to provide for parallel loading of data from inputs DA DB DC.
When SH/LD'=0, AND gates R and L are disabled, AND gates
"load" are enabled to pass data DA DB DC to the FF data
inputs. the next clock CLK will clock the data to QA QB QC.

Fig -12: Shift Left/Right Load

If SH/LD' is changed to SH/LD'=1, the AND gates labelled
"load" are disabled, allowing the left/ right control L'/R to
set the direction of shift on the L or R AND gates. Shifting is
as in the previous figure The only thing needed to produce a
viable integrated device is to add the fourth AND gate to the
multiplexer as alluded for the 74ALS299. This is shown in
the next section for that part.

2. DESIGN AND ANALYSE ASYNCHRONOUS FIFO

Design and analyze FIFO using different read and write logics.
We have considered 64 inputs, each having 32- bit data. FIFO
is an approach for handling program work requests from
queues or stacks so that the oldest request is handled first. In
hardware, it is either an array of flops or read/write memory
that stores data from one clock domain and on request
supplies the same data to other clock domains following FIFO
logic. Clock domain that supplies data to FIFO is often
referred to as write or input logic, and clock domain that
reads data from FIFO is often referred to as read or output
logic

Fig -13: FIFO memory I/O

3. CONCLUSIONS

 Asynchronous FIFO design requires careful attention to
details from pointer generation techniques to full and empty
generation. Ignorance of important details will generally
result in a design that is easily verified but is also wrong.
finding FIFO design errors typically requires simulation of a
gate-level FIFO design with back annotation of actual delays.
Synchronization of FIFO pointers into the opposite clock
domain is safely accomplished using Gray code pointers
Synchronization of FIFO pointers into the opposite clock
domain is safely accomplished using Gray code pointers
.Generating the FIFO -full status is perhaps the hardest part
of a FIFO design. Dual n-bit Gray code counters are valuable
to synchronize and n-bit pointer into the opposite clock
domain and to use an (n-1)-bit pointer to do “full”
comparison. Synchronizing binary FIFO pointers using
techniques described is another worthy technique to use
when doing FIFO design .Generating the FIFO -empty status
is easily accomplished by comparing-equal the n-bit read
pointer to the synchronized n-bit write pointer. The
techniques described in this paper should work with
asynchronous clocks spanning small to large differences.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2151

REFERENCES

[1] N. Verma, “Analysis towards minimization of total SRAM

energy over active and idle operating modes,” IEEE
Trans. on VLSI Systems, Vol. 19, No. 9, pp. 1695-1703,
Sept. 2010.

[2] K. Nii, et al., “A 65 nm ultra-high-density dual-port SRAM
with 0.71um2 8T-cell for SoC,” IEEE Symp. on VLSI
Circuits, pp. 130-131, 2006.R. Nicole, “Title of paper
with only first word capitalized,” J. Name Stand. Abbrev.,
in press.

[3] W.-H. Du, et al, “An Energy-Efficient 10T SRAM-based
FIFO Memory Operating in Near-/Sub-threshold
Regions,” IEEE System-on-Chip Conference, pp. 19-23,
Sept. 2011.K. Elissa, “Title of paper if known,”
unpublished.

[4] D. Markovic, et al., “Ultralow-power design in near-
threshold region,” IEEE Proceedings, vol. 98, no 2, pp.
237-252, Feb. 2010.

[5] I.-J. Chang, et al., “A 32 kb 10T Sub-Threshold SRAM
Array with Bit- Interleaving and Differential Read
Scheme in 90 nm CMOS,” IEEE Journal of Solid-State
Circuits, pp 650-658, Feb. 2009.K. Elissa, “Title of paper
if known,” unpublished.

[6] Y.-T. Chiu, et al., “Subthreshold Asynchronous FIFO
Memory for Wireless Body Area Networks (WBANs)”,
International Symposium on Medical Information and
Communication Technology (ISMICT), March 2010.

[7] M.-H. Tu, et al, “Single-ended Subthreshold SRAM with
Asymmetrical Write/Read-Assist,” in IEEE Trans. on
Circuits and Systems, Vol. 57, No. 12, pp.3039-3047, Dec.
2010. K. Elissa, “Title of paper if known,” unpublished.

[8] M.-T. Chang, et al., “A Robust Ultra- Low Power
Asynchronous FIFO Memory with Self-Adaptive Power
Control,” IEEE System-on-Chip Conference, pp. 175-178,
2008.

[9] W.-H. Du, et al., “A 2kb built-in row-controlled dynamic
voltage scaling near-/sub-threshold FIFO memory for
WBANs," IEEE International Symposium on VLSI Design,
Automation, and Test (VLSI- DAT, pp.1-4, 2012.

