
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1885

Critical Web Application Security Risks

Sarthak Javeri1 and Prof. Meenakshi Garg2

1Student, 2Associate Professor
1Department of MCA, 2Department of MCA

1Vivekanand Education Society's Institute of Technology (VESIT), Mumbai, India.
2Vivekanand Education Society's Institute of Technology (VESIT), Mumbai, India.

---***--
Abstract - Web applications are one among the foremost
prevalent platforms for information and services delivery over
Internet today. As they're increasingly used for critical
services, web applications become a popular and valuable
target for security attacks. There's little effort dedicated to
drawing connections among these techniques and building an
enormous picture of web application security research. This
paper surveys the planet of web application security, with the
aim of systematizing the prevailing techniques into an
enormous picture that promotes future research. We first
present the vulnerabilities that can lead to an unsecured web
application and how application can be exploited. Finally, we
discuss the technique which can be used for preventing those
vulnerabilities and make application more secured

Key Words — Web applications, Security testing,
Vulnerabilities

1. INTRODUCTION

In Recent years, we've witnessed rapid diffusion of internet
which produces significant demand of web applications with
enforced security. Thanks to which there's a rise within the
number of vulnerabilities in web applications which may be
exploited by attackers so on gain unauthorized access to the
online sites and web applications. Modern Web systems are
really complex, distributed and heterogeneous, interactive
and responsive, ever evolving, and rapidly changed. Web
domain is pervasive and dynamic in nature which makes it
more susceptible to malevolent actions like security
breaches, Trojans etc. within the light of diversification of
the online applications, security becomes a critical issue and
is said to the standard of the online application. So we will
say that security becomes an elusive goal. Understanding
vulnerabilities like cross-site scripting, SQL injection, broken
authentication helps us understand the critical risks. Thanks
to the big increase within the web application vulnerabilities,
there are various threats and challenges being faced which
may cause a severe setback to the integrity, confidentiality
and security of the online applications. So as to plan any
effective methodology or techniques for web security testing,
we should always first understand the various web
application security risks.

The goal of the paper is to debate about various web
application security risk and the way to stop them to make a
secure web application.

2. INJECTION

2.1 Am I vulnerable to Injection?

•User supplied data isn't validated, filtered or sanitized by
the appliance.

Hostile data is directly used or concatenated, or in stored
procedures.

•Hostile data is used within ORM search parameters such the
search evaluates bent include sensitive or all records.

•Hostile data is directly used or concatenated and hostile
data in dynamic queries, commands, or in stored procedures.

2.2 How Do I Prevent Injection?

•Positive or "white list" input validation, but this is often
often not a whole defense as many applications require
special characters, like text areas or APIs for mobile
applications

•For any residual dynamic queries, escape special characters
using the precise escape syntax for that interpreter. Java
Encoder provide such escaping routines. NB: SQL structure
like table names, column names, then on cannot be escaped,
and thus user-supplied structure names are dangerous. This
is often often a typical issue in report writing software.

•Use LIMIT and other SQL controls within queries to prevent
mass disclosure of records just in case of SQL injection.

3. Broken Authentication

3.1 Am I susceptible to Broken Auth?

•Permits credential stuffing, which is where the attacker
features an inventory of valid usernames and passwords.

•Permits brute force or other automated attacks.

•Permits default, weak or well-known passwords, like
"Password1" or "admin/admin“.

•Uses weak or ineffectual credential recovery and forgot
password processes, like "knowledge-based answers", which
cannot be made safe.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1886

•Uses plain text, encrypted, or weakly hashed passwords
permit the rapid recovery of passwords using GPU crackers
or brute force tools.

•Has missing or ineffective multi-factor authentication.

3.2 How Do I Prevent This?

•Don’t deploy with any default credentials, particularly for
admin users

•Store passwords employing a contemporary a way hash
function with sufficient work factor to prevent realistic GPU
cracking attacks.

•Implement weak password checks, like testing new or
changed passwords against a listing of the very best 10000
worst passwords.

•Align password length, complexity and rotation policies
with NIST 800-63 B’s, evidence based password policies

•Where possible, implement multi-factor authentication to
prevent credential stuffing, brute force, automated, and
stolen credential attacks

•Log authentication failures and alert administrators when
credential stuffing, brute force, other attacks are detected.

4. Sensitive Data Exposure

4.1 Am I susceptible to Data Exposure?

•Is any data of a site transmitted in clear text, internally or
externally? Internet traffic is particularly dangerous, but
from load balancers to web servers or from web servers to
rear systems are often problematic.

•Is sensitive data stored in clear text, including backups?

•Are unspecified or weak cryptographic algorithms used
either by default or in older code? (see A6:2017 Security
Misconfiguration)

•Are given crypto keys in use, generic crypto keys generated
or re-used, or is proper key management or rotation
missing?

•Is encryption not enforced, e.g. are any user agent security
directives or headers missing?

4.2 How Do I Prevent This?

•Classify data processed, stored or transmitted by a system.
Apply controls as per the classification.

•Understand the privacy laws or regulations applicable to
sensitive data, and protect as per regulatory requirements

•Don’t store sensitive data unnecessarily .Discard it as soon
as possible or use PCI DSS compliant tokenization or maybe
truncation. Data you don’t retain can’t be stolen.

•Make sure that critical data is encrypted

•Encrypt all data in transit, like using TLS. Enforce this using
directives like HSTS

•Ensure up-to-date and powerful standard algorithms or
ciphers, parameters, protocols and keys are used, and proper
key management is in situ. Think about using crypto
modules.

•Ensure passwords are stored with a robust adaptive
algorithm appropriate for password protection, like Argon2,
scrypt, bcryptand PBKDF2. Configure the work factor (delay
factor) as high as you'll tolerate.

•Disable caching for response that contains sensitive data.

•Verify independently the effectiveness of your settings.

5. XML External Entities

5.1 Am I susceptible to XXE?

• Application accepts XML directly or XML uploads,
untrusted sources, or inserts untrusted data into XML
documents, which is then parsed by an XML processor

•Any SOAP based web services has document type
definitions (DTDs) enabled. Because the exact mechanism
for disabling DTD processing varies by processor, it's
recommended that you simply consult a reference like the
OWASP XXE Prevention Cheat Sheet.

•If your application uses SOAP before version 1.2, it's likely
vulnerable to XXE attacks if XML entities are being passed to
the SOAP framework.

•SAST tools can help detect XXE in ASCII text file, although
manual code review is that the best alternative in large,
complex apps with much integration.

•Being susceptible to XXE attacks likely means you're
susceptible to other billion laughs denial-of-service attacks.

5.2 How Do I Prevent This?

•Disable XML external entity and DTD processing altogether
XML parsers in your application, as per the OWASP XXE
Prevention Cheat Sheet.

•Implement white listing input validation, filtering, or
sanitization to stop hostile data within XML documents,
headers, or nodes.

•Patch or upgrade all the most recent XML processors and
libraries in use by the app or on the underlying OS. The
utilization of dependency checkers is critical in managing the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1887

danger from necessary libraries and components in not only
your app, but any downstream integrations.

•Upgrade SOAP to the newest version.

6. Broken Access Control

6.1 Am I susceptible to Broken Access Ctl?

•Bypassing access control checks by modifying the URL,
internal app state, or the HTML page, or just employing a
custom API attack tool.

•Allowing the first key to be changed to another's user’s
record, like viewing or editing someone else's account.

•Elevation of privilege. Performing users tasks without being
logged in, or acting as an admin when logged in as a user.

•Metadata manipulation, like tampering with a JWT access
control token or a cookie or hidden field manipulated to
escalate privileges.

•Force browsing to authenticated pages as an
unauthenticated user, or to privileged pages as a typical user
or API not enforcing access controls for POST, PUT and
DELETE

6.2 How Do I Prevent This?

•Implement access control mechanisms once and re-use
them throughout the appliance.

•Enforce record ownership, instead of accepting that the
user can perform all actions on file

•Domain access controls are unique to every application, but
business limit requirements should be enforced by domain
models

•Disable web server directory listing, and ensure file
metadata such (e.g. .git) isn't present within web roots

• Alert admins when repeated failures happen in log

•Rate limiting API and controller access to attenuate the
harm from automated attack tooling.

7. Security Misconfiguration

7.1 Am I susceptible to Security Misconfiguration?

•Are any unnecessary features enabled or installed (e.g.
ports, services, pages, accounts, privileges)?

•Are default accounts and their passwords still in use ?

•Does your error handling reveal informative error
messages ?

•Do still you user older configs with updated software? Does
one continue to support obsolete backward compatibility?

•Are the safety settings in your application servers,
application frameworks (e.g. Struts, Spring, ASP.NET),
libraries, databases, etc. not set to secure values?

•Is any of your software out of date? (see A9:2017Using
Components with Known Vulnerabilities)

7.2 How Do I Prevent This?

•A repeatable hardening process that creates it fast and
straightforward to deploy another environment that's
properly locked down. QA, and production environments
should all be configured identically (with different
credentials utilized in each environment). This process
should be automated to attenuate the difficulty required to
setup a replacement secure environment.

•Remove or don't install any unnecessary features,
components, documentation and samples. Remove unused
dependencies and frameworks.

•A strong application architecture that provides effective,
secure separation between components or cloud security
groups.

8. Cross-Site Scripting (XXS)

8.1 Am I Vulnerable XSS?

Reflected XSS: Your app or API includes unvalidated and
unescaped user input as a neighborhood of HTML output or
there is no content security policy (CSP) header. A successful
attack can allow the attacker to execute arbitrary HTML and
JavaScript within the victim’s browser. Typically the user
will need to interact with a link, or another attacker
controlled page, sort of a watering hole attack, malvertizing,
or similar.

Stored XSS: Your app or API stores unsanitized user input
that's viewed at a later time by another user or an
administrator. Stored XSS is typically considered a high or
critical risk.

DOM XSS: JavaScript frameworks, single page apps, and APIs
that dynamically include attacker-controllable data to a page
are vulnerable to DOM XSS. Ideally, you'd avoid sending
attacker-controllable data to unsafe JavaScript APIs.

8.2 How Do I Prevent This?

•Use safer frameworks that automatically escape for XSS
intentionally, like in Ruby 3.0 or React JS.

•Escaping untrusted HTTP request data supported the
context within the HTML output will resolve Reflected and
Stored XSS vulnerabilities..

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1888

•Enabling CSP could also be a defense thorough mitigating
control against XSS, assuming no other vulnerabilities exist
which may allow placing malicious code via local file include
like path traversal overwrites, or vulnerable libraries in
permitted sources, like content delivery network or local
libraries.

•An automated process to verify the effectiveness of the
configurations and settings altogether environments.

9. Insecure Deserialization

9.1 Am I vulnerable to Insecure Deserialization?

•The serialization mechanism allows for the creation of
arbitrary data types, AND

•There are classes available to the appliance which can be
chained together to vary application behavior during or after
deserialization, or unintended content are often used to
influence application behavior, AND

•The application or API accepts and deserializes hostile
objects supplied by an attacker, or an application uses
serialized opaque client side state without appropriate
tamper resistant controls. OR

•Security state sent to an untrusted client without some kind
of integrity control is perhaps going vulnerable to
deserialization

9.2 How Do I Prevent This?

•Implement encryption of the serialized objects to prevent
data tampering

•Isolate code that deserializes, such it runs in very low
privilege environments, like temporary containers.

•Log deserialization exceptions and failures, like where the
incoming type is not the expected type, or the deserialization
throws exceptions.

•Monitor deserialization, alerting if a user deserializes
constantly.

10. Using Components with Known Vulnerabilities

10.1 Am I susceptible to Known Vulnerabilities?

•If you are doing not know the versions of all components
you employ (both client-side and server-side).

•If any of your software out of date? This includes the OS,
Web/App Server, DBMS, applications, APIs and every one
components, runtime environments and libraries.

•If you are doing not know if they're vulnerable. Either if you
don’t research for this information or if you don’t scan them
for vulnerabilities on a daily base.

•If you are doing not fix nor upgrade the underlying
platform, frameworks and dependencies during a timely
fashion. This happens is environments where patching isn't
done regularly, which leaves organizations hospitable many
days or months of unnecessary exposure to fixed
vulnerabilities. This is often likely the basis explanation for
one among the most important breaches of all time.

•If you are doing not secure the components' configurations
(seeA6:2017-Security Misconfiguration).

10.2 How Do I Prevent This?

•Remove unnecessary data components

•Continuously inventory the versions of both client-side and
server-side components and their dependencies using tools
like versions, Dependency Check, retire.js, etc.

•Continuously monitor sources for vulnerabilities in your
components. Use automated software composition analysis
tools

•Only obtain your components from official sources and,
when possible, prefer signed packages to scale back the
prospect of getting a modified, malicious component.

11. References:

1. https://www.lifelock.com/education/history-of-
databreaches/

2. https://www.ibm.com/security/data-breach

3. https://info.whitehatsec.com/rs/675-
YBI674/images/WHS%202017%20Application%2
0Sec urity%20Report%20FINAL.pdf

4. Source: Building a web application security
program from Securosis.com

5. Source: Open Web Application Security Project

6. https://usa.kaspersky.com/about/pressreleases/2
017_kaspersky-lab-report-on-ddosattacks-in-q1-
2017-the-lull-before-the-storm

7. Source: Gartner presentation on SAST and DAST

https://www.ibm.com/security/data-breach
https://usa.kaspersky.com/about/pressreleases/2017_kaspersky-lab-report-on-ddosattacks-in-q1-2017-the-lull-before-the-storm
https://usa.kaspersky.com/about/pressreleases/2017_kaspersky-lab-report-on-ddosattacks-in-q1-2017-the-lull-before-the-storm
https://usa.kaspersky.com/about/pressreleases/2017_kaspersky-lab-report-on-ddosattacks-in-q1-2017-the-lull-before-the-storm

