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Abstract - This paper presents online estimation of SOH, 
Capacity fade and Capacity for Li-ion batteries used in Electric 
Vehicles. Battery capacity estimation is done separately for 
driving and charging mode. The driving mode algorithm is 
developed based on electrical equivalent circuit model. The 
model developed is simulated using MATLAB/Simulink and the 
simulations are done considering the changes in the number of 
cycles, temperature and charge – discharge profiles. 
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1. INTRODUCTION  

Use of conventional Internal combustion engine vehicle 
leads to ecological imbalance & non renewable energy 
sources are going to exhaust in upcoming years. Improved 
fuel economy is the urgent need in today’s autonomy. So, the 
advancement in the electrochemical batteries is of great 
concern. Despite the concern focus has shifted from lead acid 
batteries to Li-ion batteries. Reason being is Lead acid 
batteries have high self-discharge, short operating life, low 
power density, low energy density etc. Even still Li-ion 
batteries suffers from the disadvantage of performance 
degradation, low reliability due to ageing process and low 
thermal stability [7]. So, the primary focus in the design of 
batteries is to minimize power loss, capacity loss and to 
extend the life of battery. 

 To achieve long operating life & optimized performance 
require the in-depth knowledge about the state of health 
(SOH) and state of charge (SOC). There are two main losses 
are observed in Li-ion batteries. They are power fade and 
capacity fade. Power fade is due to uneven growth of internal 
resistance in the battery. And capacity fade is due to the 
adverse variation in the temperature, repeated usage over 
time. This capacity fade estimation provides information 
about vehicle range. As the fade or the loss increases, the 
range of electric vehicle decreases. This fade management is 
challenging aspect in battery management system [1]. 

 Conventional methods of estimating battery capacity are 
inaccurate and most methods work only for specific 
temperature, charge-discharge profile etc. So, such methods 
are highly undesirable. 

 There are various estimation models available in the 
literature. Most of them either inaccurate or impractical for 
real time vehicle scenarios [4]. Other methods depend on so 
called ageing models. These ageing tests will take years to 

complete the estimation [5] and they are not suitable for 
dynamic applications. However, direct estimation of capacity 
is very difficult. 

 The electrical behavior of Li-ion batteries is modeled using 
equivalent diagrams [6]. Typically, capacitor or voltage 
source is used to represent OCV. Battery internal resistance 
is represented by a resistor and Battery different chemical 
effects such as diffusion, double layer are represented by R-C 
pairs. Increasing the R-C pairs, increases the complexity but 
the accuracy of the results increases. These electrical 
parameters experience a change with SOC, SOH and 
temperature 

2. LI-ION BATTERY EQUIVALENT CIRCUIT MODEL 

Equivalent circuits are the theoretical circuits which are 
most commonly used in different types of batteries. In this 
paper, a second order equivalent circuit model is used. This 
Equivalent circuit model (ECM) is used to describe the 
electrical behavior the LI-ion battery. 

The second order ECM gives more accurate results 
compared to first order ECM. The order of the model can be 
found by hybrid pulse power characterization test (HPPC) 
[3].The circuit diagram of the second order ECM is as shown 
in Fig. 1. The two-RC-pair ECM captures two main chemical 
process. The R1-C1 pair account for double layer effect and 
R2-C2 account for diffusion effect. In Fig. 1, Voc is the open 
circuit voltage (OCV). And it defined as the voltage difference 
between the two terminals of a battery in the absence of load 
connection. Vt is the terminal voltage is the voltage resulted 
from the OCV and drop across total impedance of the circuit. 
V1 is the voltage drop across R1-C1 pair and V2 is the 
voltage drop across the R2-C2 pair. 
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Fig -1: The equivalent circuit diagram of Li-ion battery 

SOH is a figure of merit condition of a battery compared to 
its ideal conditions. Capacity fade is the loss in the capacity 
of the battery. And capacity is the number of charges a 
battery can deliver at the rated voltage. But SOC is the ratio 
of remaining charges in the battery to the nominal capacity 
of the battery. With decrease in capacity, battery stores less 
charge at the same SOC level and it is known that SOC is a 
monotonic function of OCV, i.e. SOC neither increases nor 
decreases completely with variation in OCV but varies 
monotonically with OCV. And the old battery has fewer 
remaining charges compared to a new battery. This implied 
that with less capacity, terminal voltage of a battery 
increases faster at the same SOC level. This information 
further implied that battery capacity correlates with change 
of OCV divided by charge accumulation, i.e.  ,  

where  

 

 This fact is used further to develop capacity estimation 
algorithm. 

 By applying KVL to ECM, we get battery terminal voltage as  

𝑉t(𝑘) = 𝑉𝑜𝑐 (𝑘) + 𝐼(𝑘)𝑅 + 𝑉1(𝑘) + 𝑉2(𝑘) (1) 

3. ESTIMATION OF CAPACITY 

3.1Driving Mode 

 Battery enters into driving mode when the vehicle is moving 
and battery is discharging. In this mode battery current 
varies as the power requirement for the vehicle changes. So, 
battery current is taken as one the input to the system. As 
the discharging current varies offers rich signal excitation to 
estimate battery capacity. 

 We have equations in discrete time domain, given by 

  = A  + B I (k-1) 

 Vt(k) – Voc(k) = C  + D I (k) (2) 

where 𝐴 = diag (𝑎1, 𝑎2), 𝐵 = [𝑏1 𝑏2]T , 𝐶 = [1 1] and  

 𝐷 = 𝑅, and 

𝑎1 = exp [−Δ𝑡/(𝑅1𝐶1)] 
𝑏1 = 𝑅1 [1 −(exp −Δ𝑡/(𝑅1 𝐶1))] 
𝑎2 = exp [−Δ𝑡/(𝑅2 𝐶2)] 
𝑏2 = 𝑅2 [1−exp(−Δ𝑡/(𝑅2𝐶2))] (3)  

Where Δ𝑡 is the sampling period. The equations (2) & (3) 
shows that Voc is not a constant but varying signal. So, to 
capture variation of OCV, it is no more modeled as constant. 
The transfer function can be written as follows 

Vt(Z) – Voc(Z) = C(Z I – A)-1 + D I (Z) 

=  I(Z) (4) 

 Where I is the identity 2×2 matrix. 

 After Z-transformation the above equation becomes as 

𝑉t(𝑘) = (𝑎1 + 𝑎2)𝑉t(𝑘−1) − 𝑎1𝑎2𝑉t(𝑘−2) + 𝑅*𝐼(𝑘) +[𝑏1+𝑏2− 
(𝑎1 + 𝑎2)𝑅]*𝐼(𝑘−1) + (𝑎1𝑎2𝑅−𝑏1𝑎2 − 𝑏2𝑎1 𝐼(𝑘−2) + 
𝑉𝑜𝑐(𝑘)−(𝑎1 + 𝑎2)*𝑉𝑜𝑐(𝑘−1)+𝑎1𝑎2𝑉𝑜𝑐(𝑘 –2) (5) 

 As per coulomb counting method, the definition of battery 
capacity can be modified as  

C =  (6)  

Where C is battery capacity in AH,  is total charge 
accumulation over the period and  is the change in SOC 

Further the equation (6) can be modified by substituting  
as 

 

And Equation (6) changes to C =  ) (7) 

 It can be observed from (7) that the battery capacity C is 
inversely proportional to h and change in SOC and also 
directly proportional to change in OCV.  

The ratio   defines the slope of the curve OCV 
versus SOC. This OCV versus SOC curve can be obtained via 
experiments. A lookup table having the values of   
is established. And the new parameter h is calculated as 
follows. 

As h depends on change in OCV which is given by  

 

Similarly, terminal voltage equation changes to  
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Δ𝑉t(𝑘)= 𝑉t(𝑘)−𝑉t(𝑘 − 1) 

Further (5) changes to 

∆𝑉t(𝑘)= (𝑎1 +𝑎2) ∆𝑉t(𝑘−1)−𝑎1𝑎2∆𝑉t(𝑘 −2) + 𝑅𝛥𝐼(𝑘) 

+(𝑏1+𝑏2−(𝑎1+𝑎2)𝑅)∆𝐼(𝑘−1)+(𝑎1𝑎2𝑅−𝑎2𝑏1−𝑎1𝑏2) 

*∆𝐼(𝑘−2) +Δ𝑉𝑜𝑐(𝑘)−(𝑎1 +𝑎2)Δ𝑉𝑜𝑐(𝑘 −1) +(𝑎1𝑎2) 

*Δ𝑉𝑜𝑐 (𝑘 −2) (8) 

And new parameter changes to  

h =  =  (9) 

Substituting equation (9) in equation (8), we get 

Δ𝑉t(𝑘) = [1 −(𝑎1+𝑎2)+ 𝑎1*𝑎2]*h*𝐼(𝑘−1)*Δ𝑡  

+ (𝑎1+𝑎2)*Δ𝑉t(𝑘−1) −𝑎1*𝑎2Δ𝑉t(𝑘−2)+ 𝑅*𝛥𝐼(𝑘) +[𝑏1+𝑏2  

− (𝑎1+𝑎2)*R +(𝑎1+𝑎2−𝑎1𝑎2)hΔ𝑡]Δ𝐼(𝑘−1)+(𝑎1𝑎2𝑅 − 𝑎2𝑏1 

 − 𝑎1𝑏2−𝑎1𝑎2hΔ𝑡) Δ𝐼(𝑘−2) (10)  

The above equation can be written in simplified form as  

∆𝑉t(𝑘) = 𝜃𝑇𝜙(𝑘) (11) 

Where 𝜙(𝑘) = [𝐼(𝑘−1) Δ𝑡, Δ𝑉t(𝑘−1), Δ𝑉t(𝑘−2), 

 Δ𝐼(𝑘), Δ𝐼(𝑘 − 1), Δ𝐼(𝑘−2)]T (12) 

Δ𝐼(𝑘)= 𝐼(𝑘)- 𝐼(𝑘-1) & 𝜃 = [𝜃1, 𝜃2, … , 𝜃6]T 

But the elements of 𝜃 are as follows 

𝜃1 = [1 − (𝑎1+𝑎2) +𝑎1*𝑎2]h 

𝜃2 = 𝑎1+𝑎2  

𝜃3 = -𝑎1*𝑎2  

𝜃4 = 𝑅 

𝜃5 = b1+ b2 − (𝑎1+𝑎2)R + [(𝑎1+𝑎2)− 𝑎1*𝑎2]hΔ𝑡 

𝜃6 = 𝑎1*𝑎2*𝑅 − 𝑎2*b1 − 𝑎1*b2− 𝑎1*𝑎2*hΔ𝑡 (13) 

From equation (13) h can be inferred as  

h =𝜃1 / (1 − 𝜃2 − 𝜃3) 

Now the task is to find 𝜃 and in turn h from the measured 
terminal voltage and battery current to estimate battery 
capacity. 

 Recursive least square (RLS) algorithms are robust 
algorithms which are successfully applied in many 
industries. Here, we have used U-D RLS algorithm [7]. The 
objective this RLS algorithm is to modify or correct previous 

estimate with some correlation. It will just provide next 
preceding estimate. This method is successfully applied in 
many industries due to computational efficiency, high 
estimation accuracy, stability and robustness.  

 In the U-D RLS algorithm P is defined as the Positive definite 
covariance matrix, 𝑃 = 𝑈𝐷𝑈𝑇, where U is the upper triangular 
matrix in which upper triangular elements should be greater 
than zero and D is the diagonal matrix where diagonal 
elements are equal to one. The elements P are needs to be 
updated through the multiplication of U & D matrices. 

 This algorithm uses only measured terminal voltage, battery 
current and previous estimate of 𝜃. The parameter 𝜃 vary 
with the small operation change. So, as to compensate this 
forgetting factor λ is introduced. 

The one stage algorithm has the following steps 

Step 1: 

Read current 𝐼(𝑘) and voltage 𝑉(𝑘) where k = 1,2. 

Initialize Nonvolatile memory (NVM) with the previous 
estimate of 𝜃 and set initial value for forgetting factor such 
that 0 < λ ≤ 1. 

Step 2: 

Update 𝜙(𝑘), using the input values. 

where 𝜙(𝑘) = [𝐼(𝑘−1)Δ𝑡, Δ𝑉(𝑘−1), Δ𝑉(𝑘−2), Δ𝐼(𝑘), Δ𝐼(𝑘 − 1), 
Δ𝐼(𝑘−2)]T 

Step 3: 

Introduce two new vectors k and l as 

k = [k1,…,k𝑛]T = [𝑈(𝑘−1)]T*[𝜙(𝑘)] 

 l = [l1,…,l𝑛]T = [𝐷(𝑘−1)]*k 

and initialize 𝛼0 = 𝜆. 

Step 4: 

For 𝑗 = 1,2, … ,6, follow Step 4.1-4.2 

Step 4.1: Compute the following: 

𝛼𝑗 = 𝛼𝑗 −1 + 𝑓𝑗𝑔𝑗 

𝐷(𝑘)𝑗𝑗 = (𝛼𝑗−1𝐷(𝑘−1)𝑗𝑗)/(𝛼𝑗𝜆) 

𝑏𝑗 = l𝑗 

𝑐𝑗= −k𝑗 /𝛼𝑗 −1 

Step 4.2: For 𝑖 = 1,2, … , 𝑗 − 1, go to Step 4.2.1 (if 𝑗=1, skip Step 
4.2.1). 
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Step 4.2.1: Calculate the following: 

𝑈(𝑘)𝑖𝑗 = 𝑈(𝑘 − 1)𝑖𝑗 + 𝑏𝑖𝑐𝑗 

𝑏𝑖 = 𝑏𝑖 + 𝑈(𝑘 − 1)𝑖𝑗 𝑏𝑗 

Step 5:  

Compute G(𝑘) = [𝑏1,…,𝑏𝑛]’/𝛼𝑛 . 

Step 6:  

Compute the error estimation as 

(𝑘)= Δ𝑉t(𝑘) − 𝜃T(𝑘−1)*𝜙((𝑘) 

Step 7:  

Update θ to minimize the estimation error  by 

𝜃(𝑘) = 𝜃(𝑘−1) + 𝐿(𝑘)* (𝑘). 

Step 8:  

Compute the parameter h  

 where h =𝜃1 /(1 − 𝜃2 − 𝜃3) 

Step 9:  

Now evaluate capacity C =Δ𝑉𝑜𝑐/(ΔSOC∗h). 

Step 10:  

Determine the capacity estimate validity If it is valid, save θ 
to NVM for next operation. Otherwise, save only V(k) and 
I(k) for next operation and Go to Step 2 and continue the 
algorithm. 

3.2 Charging mode 

 Battery enters into charging mode when vehicle needs 
charging. In this mode current remains constant throughout 
period and can be considered as DC current. In this mode RLS 
algorithm cannot be used because there is a lack of signal 
excitation for parameter convergence. 

The voltage across R1-C1 is V1 and voltage across R2-C2 is 
V2, these RC pairs saturate after initial period in charging 
mode and the voltages V1(k) and V2(k) are neglected. And 
the equation (1) modified as follows 

𝑉𝑜𝑐(𝑘) = 𝑉t(𝑘) −𝐼(𝑘)*𝑅 

The battery capacity in the charging mode is calculated as 
follows 

C(k)=  Δ𝑡 

Where SOC(k) is the SOC at the k th iteration 

 SOC(1) is the previous SOC  

3.3 Combined charging and driving mode 

In this mode both charging and driving mode are combined. 
Here the definition of number of cycles plays a very 
important role. It is defined as the one complete charge and 
one complete discharge. Cycle definition varies with the 
requirement and may not be the same as defined above. 

4. ESTIMATION OF CAPACITY FADE 

The loss in the capacity is due to various factors such as 
temperature variation, repeated usage over time and due to 
formation of solid electrolyte interface (SEI). Such a capacity 
fade estimation is challenging. Here we have estimated 
capacity fade by the following formula 

 Capacity fade = Cnominal-C(k) 

Where Cnominal is the nominal capacity given by the 
manufacturer in the datasheet. 

4.1 Estimation of SOH 

 SOH is an index which measure the health condition of a 
battery. It represents the health status of the battery. It is 
estimated by the following formula 

SOH=1 – capacity fade/(Cnominal-Ceol) 

Where Ceol is the capacity at the end of life  

 i.e. Ceol=0.8Cnominal. 

5. RESULTS AND DISCUSSION 

 In this paper, MATLAB/Simulink software used to simulate 
the circuit. Fig.2 shows the complete simulation of the 
proposed system. 

 

Fig -2: Overall proposed system model. 
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Here, input the system such as SOC, Ibat, Vt and OCV is given 
from the 1st model and the 2nd model forms the main part of 
the proposed system which estimates capacity, capacity fade 
and SOH. 

 Fig-3 shows the input to the proposed system. Reader can 
refer [2] for the complete detailed analysis of the input 
system. This 1stmodel provides inputs such as Ibat, Vt, SOC 
and OCV. 

 

Fig -3: 1st model (input model) 

Fig.4 shows the 2nd model which gives detailed information 
about the proposed system [1]. This model includes all 
capacity estimation algorithm, capacity fade and SOH. 

 

Fig - 4 2nd model (output model) 

Fig.5 shows the Simulink model of capacity estimation 
algorithm for driving mode. Algorithm is implemented in 
Simulink scope but not in programming scope. 

 

 

Fig-5 Driving mode capacity estimation algorithm 
implementation in simulink. 

 Fig.6 shows the Simulink model of combined capacity 
estimation algorithm. This figure shows the merging of both 
driving mode and charging mode. 

 Fig – 6 combined driving and charging mode. 

 Fig.7 shows the simulation result of capacity, capacity fade 
and SOH for the input of 850mAh, 298k,0.8A pulse current for 
50% duty ratio for 4505 cycles. We found that capacity faded 
from 850mAh to 722mAh and SOH reduced to 84.97%. 
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Fig-7 Simulation results of capacity, capacity fade and SOH 

6. CONCLUSION 

The proposed system estimates SOH, capacity fade and SOH 
considering the significant effects of temperature and 
charge-discharge profile. Onboard algorithm developed for 
both driving and charge mode and the developed algorithm 
are simulated in MATLAB/Simulink and the results show 
that developed model can be applied in real time vehicle 
operation. 
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