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Abstract - Machine transliteration is an emerging research 
area which converts words from one language to another 
without losing its phonological characteristics. Transliteration 
is a supporting tool for machine translation and Cross 
language information retrieval. Transliteration is mainly used 
for handling named entities and out of vocabulary words in a 
machine translation system. It preserves the phonetic 
structure of the words. We propose a modified neural encoder-
decoder model that maximizes parameter sharing across 
language pair in order to effectively leverage orthographic 
similarity. We also show that Bilingual transliteration models 
can generalize well to languages/language pairs not 
encountered during training and hence perform well on the 
zero shot transliteration task. We have applied this technique 
for transliterating English to Hindi and achieved exact Hindi 
transliterations for 75-80% of English names. 
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1. INTRODUCTION  

Transliteration converts the text from one script to another. 
Transliteration can be seen as two level processes: first 
segmenting the source language word into transliteration 
units and then aligning and mapping these units to target 
language units. For e.g. the word “Mera” which can be 
segmented as (m,e,r,a) then these units are transliterated to 
target language units. Transliteration is mainly used to 
convert the foreign words in a language which are required 
to be phonetically but need not to be grammatically 
equivalent to the words in another language.  

Transliteration simply converts a text from one script to 
another. It is not concerned about faithfully representing the 
sounds of the original; rather, it focusses on representing the 
characters with as much accuracy and unambiguity as 
possible. As a technique, transliteration can be seen in two 
ways. When one writes native terms using a non-native or 
foreign script, it is called forward transliteration. For 
example, GULAB (in Devanagari script) is a Hindi word 
meaning rose in English. It can be transliterated (written) in 
Roman script as gulab , gulaab , goolab or in some other 
form. On the other hand, when one represents conversion of 
a term back to its native script from a non-native script, it is 
called back-transliteration. For example, gulab written in 
Roman script is back-transliterated to in its native script. 
Forward transliteration allows for creativity of the 
transliterator, whereas back-transliteration is ideally strict 
and expects the same initial word to be generated (with 
some exceptions, especially for East Asian languages). 

We propose a compact neural encoder-decoder model for 
multilingual transliteration, that is designed to ensure 
maximum sharing of parameters across languages while 
providing room for learning language-specific parameters. 
This allows greater sharing of knowledge across language 
pairs by leveraging orthographic similarity. We empirically 
show that models with maximal parameter sharing are 
beneficial, without increasing the model size. Machine 
translation or transliteration models are inspired by deep 
representation learning. Their memory requirements are 
very less as compared to statistical models. Neural Networks 
are trained after for certain domains or applications. After 
training, the network practices. With time it starts operating 
according to its own judgment, turning into an "expert". 

2. LITERATURE SURVEY 

Arbabi et al. developed an Arabic-English transliteration 
system [1] using knowledge-based systems and neural 
networks. The first step in this system was to enter the 
names into the database which was obtained from telephone 
dictionary. As in Arabic script, short vowels are generally not 
written, a knowledge-based system is used to vowelize these 
names to add missing short vowels. The words which cannot 
be properly vowelized by KBS are then eliminated using 
artificial neural network. The network is trained using 
cascade correlation method, a supervised, feed forward 
neural processing algorithm. Thus the reliability of the 
names in terms of Arabic syllabification is determined 
through neural networks. The output of the network is in 
binary terms. The artificial neural network is trained on 
2800 Arabic words and tested on 1350 words. After this, the 
vowelized names are converted into phonetic roman 
representation using a parser and broken down into groups 
of syllables. Finally the syllabified phonetics is used to 
produce various spellings in English.  

Kang et. al. presented an English-to-Korean automatic 
transliteration and back transliteration system [2] based 
on decision tree learning. The proposed methodology is fully 
bidirectional. They have developed very efficient character 
alignment algorithm that phonetically aligns the English 
words and Korean transliteration pairs. The alignment 
reduces the number of decision trees to be learned to 26 for 
English-to-Korean transliteration and to 46 for Korean-to-
English back transliteration. After learning, the 
transliteration and back transliteration using decision tree is 
straightforward. 

Wan and Verspoor have proposed an "Automatic English-
Chinese name Transliteration" [3] system. The system 
transliterated on the basis of pronunciation. That is, the 
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written English word was mapped to written Chinese 
character via spoken form associated with the word. The 
system worked by mapping an English word to a phonemic 
representation and then mapping each phoneme to a 
corresponding Chinese character. The transliteration 
process consisted of five stages: Semantic Abstraction, 
Syllabification, Sub-syllable divisions, Mapping to Pinyin and 
Mapping to Han characters. Semantic abstraction was a 
preprocessing step that performed dictionary lookups to 
determine which parts of the word should be translated or 
which should be transliterated. The phonetic representation 
of each sub syllable was transformed to Pinyin, which is the 
most common standard Mandarin Romanization system.  

Harshit Surana and Anil Kumar Singh in 2008, proposed a 
transliteration system on two Indian languages Hindi and 
Telugu [4]. In their experiment, a word was first classified as 
Indian or foreign using character based n - grams. The 
probability about word's origin was computed based on 
symmetric cross entropy. Based on this probability measure, 
transliteration was performed using different techniques for 
different classes (Indian or foreign). For transliteration of 
foreign words, the system first used a lookup dictionary or 
directly map from English phoneme to IL letters. For 
transliteration of Indian word, the system first segmented 
the word based on possible vowels and consonant 
combinations and then mapped these segments to their 
nearest letter combinations using some rules. The above 
steps generate transliteration candidates which were then 
filtered and ranked using fuzzy string matching in which the 
transliteration candidates were matched with the words in 
the target language corpus to generate target word. The out 
of vocabulary words are not handled by this system. 

Deep and Goyal have developed a Rule based Punjabi to 
English transliteration system for common names [5]. The 
proposed system works by employing a set of character 
sequence mapping rules between the languages involved. To 
improve accuracy, the rules are developed with specific 
constraints. This system was trained using 1013 preson's 
names and tested using different person names, city names, 
river names etc. The system has reported the overall 
accuracy of 93.22%. 

P.J. et. all. proposed English to Kannada transliteration 
system [6] using Support Vector Machine. The proposed 
system uses sequence labeling approach for transliteration 
which is a two step approach. The first step performs 
segmentation of source string into transliteration units and 
the second step performs comparisons of source and target 
transliteration units. It also resolves different combination of 
alignments and unit mappings. The whole process is divided 
into three phases: preprocessing, training using SVM and 
transliteration. The preprocessing phase converts the 
training file into a format required by SVM. The authors are 
using database of 40,000 Indian place names for the training 
of SVM. In this phase, During training phase, aligned source 
language names are used as input and target language names 
are used as label sequence and given to SVM. The training 

phase generates a transliteration model which produces top 
N probable Kannada transliteration during transliteration 
phase. The system is tested on 1000 out of corpus place 
names. The system is also compared with Google Indic 
system and reported higher accuracy while transliterating 
Indian names and places. The overall accuracy of the system 
is 87.28%. 

Dhore et al. proposed Hindi to English transliteration of 
Named entities using Conditional random Fields [7]. 
Indian places names are taken as input in Hindi language 
using Devanagari script by the system and transliterated into 
English. The input is provided in the form of syllabification in 
order to apply the n-gram techniques. This syllabification 
retains the phonemic features of the source language Hindi 
into transliterated form of English. The aim is to generate 
transliteration of a named entity given in Hindi into English 
using CRF as a statistical probability tool and n-gram as a 
feature set. The proposed system was tested using bilingual 
corpus of 7251 named entities created from web resources 
and books. The commonly used performance evaluation 
parameter was "word accuracy?. The system has received 
very good accuracy of 85.79% for the bi-grams of source 
language Hindi. 

Sanjanashree and Anand Kumar presented a framework 
for bilingual machine transliteration for English and 
Tamil based on deep learning [8]. The system uses Deep 
belief Network (DBN) which is a generative graphical model. 
The transliteration process consists of three steps viz. 
Preprocessing, Training using DBN and testing. The 
preprocessing phase does the Romanization of Tamil words. 
The data in both languages is converted to sparse binary 
matrices. Character padding is done at the end of every word 
to maintain the length of the words constant while encoding 
as sparse binary matrices. Deep Belief Network is a 
generative graphical model made up of multiple layers of 
Restricted Boltzmann Machine, a kind of Random Markov 
Field and Boltzmann Machine. 

Mathur and Saxena have developed a system for English-
Hindi named entity transliteration [9] using hybrid 
approach. The system first processes English words to 
extract phonemes using rules. After that statistical approach 
converts the English phoneme to equivalent Hindi phoneme. 
The authors have used Stanford's NER for name entity 
extraction and extracted 42,371 name entities. Rules were 
applied to these entities and phonemes were extracted. 
These English phonemes were transliterated to Hindi and a 
knowledgebase of English-Hindi phonemes was created. 

Lehal and Saini have developed "Sangam: A Perso-Arabic 
to Indic Script Machine Transliteration Model" [10]. 
Sangam is a hybrid system which combines rules as well as 
word and character level language models to transliterate 
the words. The system has been successfully tested on 
Punjabi, Urdu and Sindhi languages and can be easily 
extended for other languages like Kashmiri and Konkani. The 
transliteration accuracy for the three scripts ranges from 
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91.68% to 97.75%, which is the best accuracy reported so 
far in literature for script pairs in Perso-Arabic and Indic 
script. 

3. PROPOSED SYSTEM 

Language Modeling is the task of predicting what word/letter 
comes next. Unlike the FNN and CNN, in sequence modeling, 
the current output is dependent on the previous input and 
the length of the input is not fixed. Given a ‘t-1’ words, we are 
interested in predicting the iᵗʰ word based on the previous 
words or information. This is how we solve the language 
modeling using Recurrent Neural Networks. 

 

The input to the function is denoted in orange color and 
represented as an xₜ. The weights associated with the input 
is denoted using a vector U and the hidden representation 
(sₜ) of the word is computed as a function of the output of 
the previous time step and current input along with bias. The 
output of the hidden represented (sₜ) is given by the 
following equation, 

we compute the hidden representation of the input, the final 
output (yₜ) from the network is a softmax function 
(represented as O) of hidden representation and weights 
associated with it along with the bias. 

ENCODER-DECODER MODEL: 

 

Encoder Model 

The RNN the output of the first time step is fed as input along 
with the original input to the next time step. At each time 
step, the hidden representation (sₜ₋₁) of the word is 
computed as a function of the output of the previous time 
step and current input along with bias. The final hidden state 
vector(sₜ) contains all the encoded information from the 
previous hidden representations and previous inputs. Here, 
Recurrent Neural Network is acting as an Encoder. 

Decoder Model 

Once we pass the encoded vector to the output layer, which 
decodes into the probability distribution of the next possible 
word. The output layer is a softmax function and it takes 
hidden state representation and weights associated with it 
along with the bias as the inputs. Since the output layer 
contains the linear transformation and bias operation, it can 
be referred to as the simple feed-forward neural network. 
Feed-Forward Neural Network is acting as a Decoder. 
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ATTENTION MODEL SOLUTION: 

The problem in this approach is that encoder reads the entire 
sentence only once and it has to remember everything and 
converts that sentence to an encoded vector. For longer 
sentences, the encoder will not be able to remember the 
starting parts of the sequence resulting in the loss of 
information. 

We, humans, try to translate each word in the output by 
focusing only on certain words in the input. At each time-step, 
we take only relevant information from the long sentences 
and then translate that particular word. Ideally, at each 
time-step, we should feed only the relevant information 
(encodings of the relevant information) to the decoder for 
the translation. 

What else we need? 

So for each input word, we assign a weight α (ranges between 
0–1) that represents the importance of that word for the 
output at the time-step ‘t’. For example, α12 represents the 
importance of the first input word on the output word at the 
second time-step. To generalize, the representation αjt 
represents the weight associated with the jᵗʰ input word at 
the tᵗʰ time-step. For example, at time-step 2, we could just 
take a weighted average of the corresponding word 
representations along with the weights αjt and feed it into the 
decoder. In this scenario, we are not feeding the complete 
encoded vector into the decoder, rather the weighted 
representation of the words.  

 

 

Encoder 

The encoder operation doesn’t change much when we 
compare it to the vanilla version of encoder-decoder 
architecture without attention. At each time step, the 
representation of each word is computed as a function of the 
output of the previous time step and current input along with 
bias. The final hidden state vector(sₜ) contains all the 
encoded information from the previous hidden 
representations and previous inputs. RNN is used as an 
encoder. 

 

Decoder 

In the vanilla version of the encoder-decoder model, we 
would pass the entire encoded vector to the output layer, 
which decodes into the probability distribution of the next 
possible word. Instead of passing the entire encoded vector, 
we need to find the attention weights using the fancy 
equation that we discuss in the last section to find ejt. Then 
normalize the ejt weights using softmax function to get αjt. 
Once we have all the inputs to feed into the decoder and 
weights associated with them (Thanks to the fancy 
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equation!), we will compute the weighted combination of all 
the inputs and weights to get the resultant vector Ct. We will 
feed the weighted combination vector Ct to the Decoder RNN, 
which decodes into the probability distribution of the next 
possible word. This operation of decoding goes for all the 
time-steps present in the input. The output layer is a softmax 
function and it takes hidden state representation and weights 
associated with it along with the bias as the inputs. 

 

4. IMPLEMENTATION AND RESULTS 

Loss without Attention: 

 

Loss with Attention: 

 

 

 

 

5. CONCLUSIONS 

In this paper work, we have presented a survey on 
challenges, different approaches and evaluation metrics 
used for different machine transliteration systems. We have 
also listed some of the existing transliteration systems. 
From the survey we have found that almost all existing 
language machine transliteration systems are based on 
statistical and hybrid approach. We Implemented Bilingual 
transliteration model for languages (English and Hindi); 
Accuracy of the simple encoder-decoder model was close to 
72% while Accuracy of the Attention encoder-decoder 
model was approximately 80%.  

Given that transliteration is often used as part of machine 
translation systems, and that such systems themselves are 
increasingly character based end-to-end system, the 
question arises whether we need separate transliteration 
models at all. It appears likely that transliteration will 
remain a distinct submodule of such systems, since internal 
graphemic and phonetic representations inside 
transliteration modules are likely quite different from 
internal semantic representations required for translation. 
Experimental evidence from humans also supports the 
notion of separate and distinct processing of proper nouns 
and other nouns. 
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