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Abstract - In this paper, we use the method of finding 
general solution of linear homogeneous second order 
fractional differential equation with constant coefficients, 
regarding the modified Riemann-Liouville fractional 
derivatives to study the fractional RLC circuit problem. The 
Mittag-Leffler function and a new multiplication of 
fractional functions play important roles in this article. 
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1. INTRODUCTION  
 

Fractional derivatives of non-integer orders [1-3] have 
wide applications in physics and mechanics [4-9]. The rule 
of fractional derivative is not unique till date. The 
definition of fractional derivative is given by many authors. 
The commonly used definition is the Riemann-Liouvellie 
(R-L) definition [10-13]. Other useful definition includes 
Caputo definition of fractional derivative (1967) [10-13]. 
Jumarie’s modification of R-L fractional derivative is useful 
to avoid nonzero fractional derivative of a constant 
functions [14].  

A fractional 𝛽-order RLC circuit is an electrical circuit 
consisting of a fractional resistor 𝑅𝛽 , a fractional inductor 

𝐿𝛽 , and a fractional capacitor 𝐶𝛽 , connected in series or in 

parallel, where   𝛽     Assume that 𝑖𝑐(𝑡
𝛽) and 

𝑣𝑐(𝑡
𝛽) are the 𝛽-order current and voltage of fractional 

order capacitor respectively, then the model that involves 
both characteristics can be described by the following 
relationship, given in [20] 

𝑖𝑐(𝑡
𝛽) = 𝐶𝛽(    

𝛽
)[𝑣𝑐(𝑡

𝛽)]            (1) 

Similarly, assuming that   𝑖𝐿(𝑡
𝛽)  and  𝑣𝐿(𝑡

𝛽)  are the 

current and voltage of fractional order inductor 
respectively, then the model that involves the 
characteristics can be described by the following 
relationship, given in [20] 

𝑣𝐿(𝑡
𝛽) = 𝐿𝛽(    

𝛽
)[𝑖𝐿(𝑡

𝛽)]             (2) 

In circuit designs, the general theorems of fractional 
order oscillators and filters are introduced through 
analytical conditions, numerical analysis, circuit 
simulations, and experimental results [21-22]. The 
generalized fundamentals of the conventional LC tank 
circuit are presented in [23] showing new responses, 
which exist only in the fractional order case. In addition, 

the stability analysis of the fractional order RLC circuit is 
introduced in [24] for independent fractional-orders. 

In this study, the method of seeking general solution of 
linear homogeneous second order fractional differential 
equation with constant coefficients, regarding the 
modified Riemann-Liouville fractional derivatives is used 
to solve the fractional RLC circuit problem. Furthermore, 
the Mittag-Leffler function and a new multiplication of 
fractional functions play important roles in this paper. On 
the other hand, our approach is different from [24-27], and 
it is the generalization of the method for solving classical 
RLC circuit problem. The source free fractional RLC filter 
can be described as a fractional second order circuit, 
meaning that any voltage or current in the circuit can be 
described by a fractional second order differential 
equation in circuit analysis. This can usefully be expressed 
in a more generally applicable form: 

((    
𝛽
)
 
   (    

𝛽
)    

 ) [𝑥(𝑡𝛽)] =  ,    (3) 

where   is the 𝛽-order neper frequency, or attenuation, 

   is the 𝛽-order resonance frequency.   =
1

√𝐿𝛽𝐶𝛽
 and 

=
1

 𝑅𝛽𝐶𝛽
 , if the circuit is parallel;  =

𝑅𝛽

 𝐿𝛽
 , if the circuit is 

series. 

2. PRELIMINARIES  
 
In this section, we introduce the fractional differentiation 
and a new multiplication we used in this article and study 
their properties.  
Notation 2.1: If 𝛽 is a real number, then  

[𝛽] = {
  ,    if  𝛽   ,

the greatest integer less than or equal to α,    if 𝛽 ≥  
 

Definition 2.2: Let  𝛽 be a real number, 𝑚 be a positive 
integer, and 𝑓(𝑡) ∈ 𝐶[𝛽]([𝑎, 𝑏])  The modified 
Riemann-Liouville fractional derivatives of Jumarie type 
([14]) is defined by 

 (  𝑎  
𝛽
)[𝑓(𝑡)] 

=

{
 
 
 
 

 
 
 
  

Γ(−𝛽)
∫(𝑡 − 𝜏)−𝛽− 𝑓(𝜏)𝑑𝜏,                               if  𝛽   

𝑡

𝑎

 

Γ( − 𝛽)

𝑑

𝑑𝑡
∫(𝑡 − 𝜏)−𝛽[𝑓(𝜏) − 𝑓(𝑎)]

𝑡

𝑎

𝑑𝜏,          if    𝛽     

𝑑𝑚

𝑑𝑡𝑚
(  𝑎 𝑡

𝛽−𝑚
) [𝑓(𝑡)],                                     if  𝑚  𝛽  𝑚    

 

(4) 
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where Γ( ) = ∫ 𝑥  1𝑒  
 

 
dx is the gamma function 

defined on    . For any positive integer  , we define 

(  𝑎  
𝛽
)
 
= (  𝑎  

𝛽
)(  𝑎  

𝛽
)    (  𝑎  

𝛽
),  the   -th order 

fractional derivative of  𝑎  
𝛽

. We have the following 

properties. 

Proposition 2.3 ([15]):  Suppose that 𝛽,  , 𝑐  are real 

constants and    𝛽   , then 

(    
𝛽
)[𝑡 ] =

 (  1)

 (  𝛽 1)
𝑡  𝛽 ,  if  ≥ 𝛽          (5) 

           (    
𝛽
)[𝑐] =  ,                     (6) 

Definition 2.4 ([16]):  If 𝛽   , and   is a complex 

variable. The Mittag-Leffler function is defined by 

 𝛽( ) = ∑
  

 ( 𝛽 1)

 
   .                 (7) 

Definition 2.5 ([17]): Let    𝛽    ,    be a complex 

number, and 𝑡 be a real variable, then  𝛽( 𝑡
𝛽) is called 𝛽-

order fractional exponential function, and the 𝛽-order 

fractional cosine and sine function are defined by 

𝑐  𝛽( 𝑡
𝛽) = ∑

( 1)       𝛽

 (  𝛽 1)

 
   ,             (8) 

and 

 𝑖 𝛽( 𝑡
𝛽) = ∑

( 1)       (    )𝛽

 ((   1)𝛽 1)

 
   .          (9) 

Proposition 2.6 (fractional Euler’s formula) ([18]):  Let 

 = √−  and    𝛽   , then 

 𝛽( 𝑡
𝛽) = 𝑐  𝛽(𝑡

𝛽)    𝑖 𝛽(𝑡
𝛽).           (10) 

Next, we define a new multiplication of fractional 
functions such that some properties, for instance, product 
rule and chain rule are correct [19]. 

Definition 2.7 : Assume that  ,  ,   are complex 

numbers,   𝛽   ,  𝑚,  ,   are non-negative integers, 

and 𝑎 , 𝑏  are real numbers,   ( ) =
1

 ( 𝛽 1)
   for all  . 

Then we define    ( 𝑡
𝛽)   (  

𝛽) 

             =
 

Γ(𝑚𝛽   )
( 𝑡𝛽)

 
 

 

Γ( 𝛽   )
(  𝛽)

 
 

   =
1

 ((   )𝛽 1)
(
𝑚   
𝑚

) ( 𝑡𝛽)
 
(  𝛽)

 
,            (11) 

where (
𝑚   
𝑚

) =
(   ) 

    
. 

If   𝑓𝛽( 𝑡
𝛽) and  𝑔𝛽(  

𝛽) are two fractional functions, 

  𝑓𝛽( 𝑡
𝛽) = ∑ 𝑎 

 
     ( 𝑡

𝛽) = ∑
𝑎 

 ( 𝛽 1)
( 𝑡𝛽)

  
   ,  (12)

 𝑔𝛽(  
𝛽) = ∑ 𝑏 

 
     (  

𝛽) = ∑
  

 ( 𝛽 1)
(  𝛽)

  
   ,  (13) 

then we define 

             𝑓𝛽( 𝑡
𝛽) 𝑔𝛽(  

𝛽)   

       =  ∑ 𝑎 
 
     ( 𝑡

𝛽) ∑ 𝑏 
 
     (  

𝛽)  

       = ∑ (∑ 𝑎   𝑏     ( 𝑡
𝛽)   (  

𝛽) 
   ) 

   .       (14) 

Proposition 2.8 ([19]):    𝑓𝛽( 𝑡
𝛽) 𝑔𝛽(  

𝛽) 

= ∑
1

 ( 𝛽 1)
∑ (

 
 
) 𝑎   𝑏 

 
   

 
   ( 𝑡𝛽)

   
(  𝛽)

 
.   (15) 

Remark 2.9: The   multiplication satisfies the 

commutative law and the associate law, and it is the 

generalization of traditional multiplication, since the   

multiplication becomes the ordinary multiplication 

if 𝛽 =  .  

Proposition 2.10 :   𝛽( 𝑡
𝛽)  𝛽(  

𝛽) =  𝛽( 𝑡
𝛽    𝛽). 

        (16) 

Corollary 2.11:   𝛽( 𝑡
𝛽)  𝛽( 𝑡

𝛽) =  𝛽((   )𝑡
𝛽). 

               (17) 

The following is the major result we used in this paper to 
study the fractional RLC circuit. 

Theorem 2.12:  Let   𝛽   ,   𝑎, 𝑏,  ,  , 𝐶,  1,   ,  1, 

  ,  1,    be real constants, and       Let 𝑥 (𝑡
𝛽) be the 

general solution of the linear homogeneous second order 
fractional differential equation with constant coefficients 

( (    
𝛽
)
 
  (    

𝛽
)  𝐶) [𝑥(𝑡𝛽)] =       (18) 

Suppose that  1,    are two roots of the characteristic 
equation of Eq. (18) 

       𝑐 =                (19) 

Case 1. If  1,    are two distinct real numbers, then 

𝑥 (𝑡
𝛽) =  1  𝛽( 1𝑡

𝛽)     𝛽(  𝑡
𝛽).      (20) 

Case 2. If  1 =   =   are the same real numbers, then 

𝑥 (𝑡
𝛽) = ( 1    𝑡

𝛽)   𝛽( 𝑡
𝛽).        (21) 

Case 3. If  1 = 𝑎   𝑏,   = 𝑎 −  𝑏 are conjugate complex 
numbers, then 

𝑥 (𝑡
𝛽) =   𝛽(𝑎𝑡

𝛽) ( 1𝑐  𝛽(𝑏𝑡
𝛽)     𝑖 𝛽(𝑏𝑡

𝛽)). (22) 

3. CIRCUIT ANALYSIS 

3.1 Series Fractional RLC Circuit 

Let   𝛽    and 𝑖(𝑡𝛽)  be the 𝛽 -order fractional 
current. Then the source free series fractional RLC circuit 
satisfies 

((    
𝛽
)
 
   (    

𝛽
)    

 ) [𝑖(𝑡𝛽)] =  ,    (23) 

where  =
𝑅𝛽

 𝐿𝛽
 and   =

1

√𝐿𝛽𝐶𝛽
 . 
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Theorem 3.1.1: Consider the second order fractional 
differential equation (23). 

Case 1. If      : overdamped response, then Eq. (23) has 
the general solution 

𝑖(𝑡𝛽) =  1  𝛽( 1𝑡
𝛽)     𝛽(  𝑡

𝛽),      (24) 

where  1 = −  √ 
 −   

 ,   = − − √ 
 −   

  . 

Case 2. If   =    : critically damped response, then 

𝑖(𝑡𝛽) = ( 1    𝑡
𝛽)   𝛽(− 𝑡

𝛽).         (25) 

Case 3. If       : underdamped response, then 

  𝑖(𝑡𝛽) =   𝛽(− 𝑡
𝛽) ( 1𝑐  𝛽(  𝑡

𝛽)     𝑖 𝛽(  𝑡
𝛽)),  

(26) 

where   = √  
 −    is the damped resonance 

frequency or the damped natural frequency. 

3.2 Parallel Fractional RLC Circuit 

If   𝛽    and 𝑣(𝑡𝛽) is the 𝛽-order fractional voltage, 
then the source free parallel fractional RLC circuit satisfies 

((    
𝛽
)
 
   (    

𝛽
)    

 ) [𝑣(𝑡𝛽)] =  ,    (27) 

where  =
1

 𝑅𝛽𝐶𝛽
 and   =

1

√𝐿𝛽𝐶𝛽
 . 

Theorem 3.2.1: Consider the second order fractional 
differential equation (27). 

Case 1. If      : overdamped response, then Eq. (27) has 
the general solution 

𝑣(𝑡𝛽) =  1  𝛽( 1𝑡
𝛽)     𝛽(  𝑡

𝛽),       (28) 

where  1 = −  √ 
 −   

 ,   = − − √ 
 −   

  . 

Case 2. If   =    : critically damped response, then 

𝑣(𝑡𝛽) = ( 1    𝑡
𝛽)   𝛽(− 𝑡

𝛽).         (29) 

Case 3. If       : underdamped response, then 

  𝑣(𝑡𝛽) =   𝛽(− 𝑡
𝛽) ( 1𝑐  𝛽(  𝑡

𝛽)     𝑖 𝛽(  𝑡
𝛽)),  

(30) 

4. CONCLUSION 
 
There are many different methods to deal with fractional 
RLC circuit problem. The approach we provided in this 
paper is the generalization of solving traditional RLC 
circuit problem. Therefore, the results we obtained are 
closely related with the classical results in RLC circuit. 
Moreover, our method can be extended to solve another 
physical problems. In the future, we will use the fractional 
differential techniques to study another engineering 
mathematics problems. 
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