
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1109

Microservice Architectural Style

Swathi1

1RV18SSE17
MTech, Dept. of ISE

R V College of Engineering
Bangalore, India

Rashmi R2
Assistant Professor, Dept. of ISE

R V College of Engineering
Bangalore, India

---***---

Abstract— Microservice are architectural style, which are
tremendously growing in Industry and scientific research in
academics to achieve agility, scalability, and speed of delivery
while developing Microservices. More companies are adopted to
this technology architectural style for improve in the all life cycle
of product. In this way the monolithic architecture, migrate
towards microservice. Microsrvices are breaking the large
software component into smaller independent services which
helps in software industry to modernizing there product.
However, microservices architecture approach also introduces
a lot of new complexity and requires application developers a
certain level of maturity in order to confidently apply the
architectural style. Docker is one of the technology, which used
to build and deploy the independent microservices into one
application. Docker is a good technology to implementing
microservices architecture style. In this paper, we will discuss
about migration towards monolithic to microservice
architecture. How Docker can effectively help in deploying
mircoservices architecture and Docker process.

Keywords— Microservices Architecture, Migration towards
Microservice, Dockers, ontainers,

I. INTRODUCTION

The most common way to build software application is
monolithic architecture. The Monolithic application is a
single-tiered software application in which different
services combined into a single program from a single
platform. Monolithic architecture developed using single
database and runs on single process. The traditional N-
tier monolithic application architecture having a
database layer, business layer, and presentation layer.
The modules A, B, and C speak to three diverse business
capacities.. The layers in the diagram represent a
separation of architecture concerns. Each layer holds
every one of the three-business abilities relating to this
layer. The introduction layer has web segments of all the
three modules, the business layer has business segments
of all the three modules, and the database has tables of all
the three modules.

Monolithic Architecture is good for small-scale project
and teams, but when flexibility, scalability, speed of the
requirement like quick development, adopting to new
technologies, changes in frameworks or languages will
affect an entire application. Microservices Architecture
styles introduced to overcome the problems of Monolithic
Approach. Microservices are having single database for
each

services in the application. Microservices build and deploy
using the Dockers and containerization technology. The
further paper explain about the Microservices and how
microservices can be deployed using Dockers.

Figure 1: Monolithic Approach

II. MICROSERVICE ARCHITECTURE

Microservice Architectural styles introduced
to solve the problem of traditional approach that is
monolithic architectural patterns. Microservices are
small and autonomous services that work together.
Microservices is an Architectural style, in which large
software complex applications are consists out of one
or more services. Microservices can be build and
deploy independently of each other and are loosely
coupled and each one of these microservices focuses
on completing one task.

Rather than sharing a single database as in

Monolithic application, each of these microservices has
its own database.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1110

Having a database for each services helps in speed of the
development, increase scalability, etc., since it ensure
loose coupling. Each of the microservices has its own
database. In addition, services can utilize a kind of
database that is most appropriate to its needs.

Figure 2: Microservice Approach

Microservices are small independent services that
work together to satisfy a business prerequisite. This
area will examine about some fundamental ideas and
characteristics in micoservice architecture.

1. Small and Focus: Microservices is dividing large
applications into independent, small services.
Each services is powered by a small, hyper-
focused team that is responsible for their service
and select the appropriate processes,
technologies, and tools for that service. From
development perspective, each independent
services should treat as one application having
their own source code and repository.

2. Language Neutral: Microservices are build using
different technology for each independent
services. Developer can use the any of the
programming language in which they are
comfortable. Therefore each microservices can be
written in different language depends on their
convenient. Communication with microservices is
through language-neutral APIs, typically an
Hypertext Transfer Protocol (HTTP)-based
resource API, such as REST.

3. Loose coupling: Loose coupling is a main
characteristic of microservices. Each
independent microservice needs to be deployed
with the zero coordination with other services.

4. Bounded Context: Each model must have a context
implicitly defined within a sub-domain, and every
context defines boundaries. In other words, the
service owns its data and is responsible for its
integrity and mutability. It supports the most
important feature of microservices, which is
independence and decoupling.

There are some challenges in building microservices
that need to address before producing the benefits of
microservice.

 Configuration and Management: The microservices need
to maintain configuration across the various
environment. Since each component divided into
different independent services, the configuration of
these services is important to communicate between
all services.

 Debugging: When multiple service running difficult to
debug the each services. Therefore, we need
centralized logging and dashboard to make it easy.
Therefore, debug is one of the biggest challenge.

 Consistency: It requires decentralized around the
language platform technology and tools, which used
for implementing deploying monitoring the
microservices.

 Independency: One of major principles of a microservices
based system is making services highly decoupled.
That means it’s critical to keep the independency
between services so that each of them can be
developed, deployed independently without effecting
each other.

 Scalability: Scalability is one of the important challenging
of the microservices. Since an application is composed
of multiple independent microservices which share no
external dependencies, scaling a specific micro service
instance in the flow is greatly simplified: if a specific
microservice in a stream turns into a bottleneck
because of moderate execution, that services can be
run on more powerful hardware for increased
performance if required, or one can run various cases
of the Microservice on various machines to process
information components in equal.

III. DOCKERS

Docker is open source platform designed to create,
deploy and run the application using containers. Docker
tool used to deploy the microservices. Before Docker,
microservices were deployed using virtualization,
multiple virtual machine installed on a single host
machine. Individual machine used to run individual
microservices. Below figure 2 shows stack flow of
virtualization for deploying microservices.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1111

Figure 3: Virtualization infrastructure

stack

• Disadvantage: wastage of resources
• To overcome this problem Dockers comes in to

picture

Figure 4: Docker infrastructure stack

Docker is an open source tool designed to make it easier
to create, deploy, and run application by using containers.
Figure 4 shows stack flow of Docker infrastructure.
Containers allow a developer to package up an
application with all of the parts it needs, such as libraries
and other dependencies, and deploy it as one package.
Docker is an open source project that makes it easy to
create containers and container-based apps. Docker is a
software platform for building applications based on
containers — small and lightweight execution
environments that make shared use of the operating
system Kernel. Originally built for Linux, Docker now
runs on Windows and MacOS as well. To understand
how Docker works, let us look at some of the components
you would use to create Docker-containerized
applications.

A. Docker Architecture and Components

Figure 5: Docker Architecture

 Docker File: Each Docker container starts with a
Docker file. A Docker file is a text file written in an
easy-to-understand syntax that includes the
instructions to build a Docker image (more on that in
a moment). A Docker file specifies the operating
system that will underlie the container, along with
the languages, environmental variables, file
locations, network ports and other components.

 Docker Image: Docker image is a portable file
containing the specifications for which software
components the container will run and how. Because
a Docker file will probably include instructions
about grabbing some software packages from
online repositories.

 Docker’s run utility is the command that actually
launches a container. Each container is an instance
of an image. Containers designed to be transient
and temporary, but they can be stopped and
restarted, which launches the container into the
same state as when it was stopped.

 Docker Hub: Docker Hub is a SaaS repository for
sharing and managing containers, where you will
find official Docker images from open-source
projects and software vendors and unofficial
images from the public. You can download container
images containing useful code, or upload your own,
share them openly,or make them private instead.
Moreover, can create our own a local Docker
registry.

B. How docker can be used to deploy microservices

Docker Compose: Compose is a tool for defining and
running multi container Docker applications. Docker
Compose gives an approach to orchestrate various
container that work together. Examples include a service
that processes requests and a front-end web site, or a
service that uses a supporting function such as a Redis
cache. If application are developed using microservice
model. Then use the Docker compose tool to run
application as single unit and communicate between the
each independent services using web request. Docker

https://hub.docker.com/
https://code-maze.com/docker-hub-vs-creating-docker-registry/
https://code-maze.com/docker-hub-vs-creating-docker-registry/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 08 | Aug 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1112

[4]

(ICSAW), Gothenburg, Sweden, JUNE 2017.

Alan Sill “The Design and Architecture of Micriservices”, IEEE Cloud

 Computing, Volume: 3, Sept 2016.

[5] Raja Mubashir Munaf, Jawwad Ahmed, Faraz Khakwani, Tauseef

 Rana “Microservices Architecture: Challenges and Proposed

 Conceptual Design”, International Conference on Communication
Technologies (ComTech), 2019.

[6] David Jaramillo, Robert Smart, Duy V Nguyen “Leveraging

 Microservice Architecture by using Docker Technology”, IEEE, 2016.

[7] Gaston Marquez, Hernan Astudillo, “Actual Use of Architectural
 Patterns in Microservices-based Open Source Project”, Asia-Pacific
 Software Engineering Conference (APSEC), 2018.
[8] Nuha Alshuqayran, Nour Ali and Roger Evans, “A Systematic
 Mapping Study in Microservices Architecture”, 9th International
 Conference on Service-Oriented Computing and Applications,
 Brighton, UK, 2016.

Compose created by Docker to simplify the process of
developing and testing multi-container applications. It is
a command-line tool, reminiscent of the Docker client,
which takes in a specially formatted descriptor file to
assemble applications out of multiple containers and run
them in concert on a single host. How Docker works with
example: Suppose there are three containers running in
one YAML, file and running those containers with single
command using Docker compose.

Figure 6: Virtualization infrastructure

stack

CONCLUSION

The Conclusion of the paper presents about the
motivation and initial steps of an investigation on
microservice architectures concepts. Further more
explains about how Docker technology can be used to
build and deploy the microservices. This helps in
successfully applying the beneficial of architectural style.

REFERENCES

[1] J.Thönes, “Microservices,” IEEE Software, Dublin, Ireland, Jan 2015.

[2] Irina Astrova, Arne Koschel, Jeremias Dotterl, “Making the Move to
Microservice Architecture”, International Conference on
Information Society (i-Society), 2017.

[3] Paolo Di Francesco, “Architecturing Microservices”, IEEE
International Conference on Software Architecture Workshops

[9] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L.
Iovino, and A. Di Salle. Microart: “A software architecture recovery
tool for maintaining microservice based systems”. IEEE
International Conference on Software Architecture (ICSA), 2017.

[10] G. Kecskemeti, A. C. Marosi, and A. Kertesz. “The entice approach to
decompose monolithic services into microservices”. In High
Performance Computing & Simulation (HPCS), 2016
International Conference on, pages 591–596. IEEE, 2016.

[11] S. Newman. “Building Microservices”. O’Reilly Media, Inc., 2015.

[12] Sachchidanand Singh, Nirmala Singh, “Containers and Dockers:
Emerging Roles and Future Technology”, International Conference
on Applied and Theoretical Computing and Communication
Technology, April 2017.

[13] Devki Nandan Jha, Saurabh Garg, Prem PrakashJayaraman, Rajkumar
Buyya, Zheng Li, Rajiv Ranjan, “A Holistic Evaluation of Docker
Containers for Interfacing Microservices”, IEEE International
Conference on Services Computing (SCC), September 2018.

[14] Charles Anderson, “Docker (Software Engineering)”, IEEE Software

Volume: 32, May-June 2015

[15] Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, PhilippeMerle,

“Model-Driven Management of Docker Containers”, IEEE 9thInternational

Conference on Cloud Computing (CLOUD), 2016.

https://ieeexplore.ieee.org/author/37865699000
https://ieeexplore.ieee.org/author/37865699000
https://ieeexplore.ieee.org/author/37086461437
https://ieeexplore.ieee.org/author/37086461437
https://ieeexplore.ieee.org/xpl/conhome/8454864/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8454864/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8454864/proceeding
https://ieeexplore.ieee.org/author/37086029960
https://ieeexplore.ieee.org/author/37086029960
https://ieeexplore.ieee.org/author/37086054417
https://ieeexplore.ieee.org/author/37086054417
https://ieeexplore.ieee.org/author/37086021339
https://ieeexplore.ieee.org/author/37086021339
https://ieeexplore.ieee.org/xpl/conhome/7819578/proceeding
https://ieeexplore.ieee.org/author/37085433024
https://ieeexplore.ieee.org/author/37085433024
https://ieeexplore.ieee.org/author/37085787962
https://ieeexplore.ieee.org/author/37085787962
https://ieeexplore.ieee.org/author/37865699000
https://ieeexplore.ieee.org/author/37865699000
https://ieeexplore.ieee.org/author/37267557900
https://ieeexplore.ieee.org/author/37267557900
https://ieeexplore.ieee.org/author/37086461437
https://ieeexplore.ieee.org/author/37086461437
https://ieeexplore.ieee.org/xpl/conhome/8454864/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8454864/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8454864/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8454864/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8454864/proceeding
https://ieeexplore.ieee.org/author/37086029960
https://ieeexplore.ieee.org/author/37086029960
https://ieeexplore.ieee.org/author/37086054417
https://ieeexplore.ieee.org/author/37086054417
https://ieeexplore.ieee.org/author/37086021339
https://ieeexplore.ieee.org/author/37086021339
https://ieeexplore.ieee.org/xpl/conhome/7819578/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7819578/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7819578/proceeding

