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Abstract - In general electromyography (EMG) is used to 
find the activity of muscles to extract accurate information, it 
is required to record a clean and undistorted 
electromyography (EMG) signal. However, when EMG is 
recorded of some specific muscles, it is often contaminated by 
ECG signal, hereby significantly increasing the power of EMG 
signal. This artifact can hardly be avoided; therefore, to 
extract valid information it is necessary to process EMG signal 
to remove ECG signal. The variations of the ECG in terms of 
amplitude and frequency time are evaluated by using the 
Heart rate and QRS complex; the respective variations are 
simultaneously captured by a set of third-order constant-
coefficient polynomials modulating a stationary harmonic 
basis in the analysis window. The novelty of the proposed 
method is allows to suppress the ECG signal content at low 
frequencies and the resulting model is linear in parameters 
and the least-squares solution to the corresponding linear 
system of equations efficiently provides model parameter 
estimates. The comparative results suggest that the proposed 
method outperforms two reference methods in terms of the 
EMG preservation at low frequencies. 
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1. INTRODUCTION  
 
Surface electromyography is a noninvasive technique used 
to evaluate the activity of the muscles [1]. When EMG is 
recorded of some specific muscles, it is often contaminated 
by ECG signal, hereby significantly increasing the power of 
EMG signal. This artifact can hardly be avoided; therefore, to 
extract valid information, various research done and 
schemes proposed by the various authors [2] to remove ECG 
signal from EMG signal. The simplest method consists of 
high-pass filtering EMG signal with a fourth order 
Butterworth filter at a cut-off frequency of 30Hz [3]. The 
main problem of this method ([4]-[7]) is that an important 
part of the EMG signals concerning the changes of negative 
after potentials is removed as well. It is known that the 
negative after potentials increase during fatigue, and these 
changes could affect the amplitude of the EMG signal 
significantly. 

In addition, it is found that these changes are reflected in the 
EMG spectrum within a frequency range below 10 Hz. 
Therefore, by filtering the EMG signal using a high-pass filter 
of 30Hz, valuable information of the EMG signal is removed 

when fatigue is analyzed. Other researchers developed 
techniques that required the recording of additional signals. 
Some of those techniques were based on adaptive filtering, 
which an external reference ECG needed signal as well as the 
EMG signals [8]. Other methods required the recording of 
several EMG signals to remove the ECG signals using 
independent component analysis (ICA). Another form of 
adaptive filtering [9] was the wavelet-based approach, which 
performed without external reference signals. However, the 
selection of an appropriate wavelet shapes and 
corresponding decision thresholding are major drawbacks 
from the user’s point of view. Let us also mention a recent 
approach which uses a nonlinear scaled wavelet 
decomposition followed by ECG–EMG pattern separation by 
means of frequency domain ICA.  

 In this paper, we present an approach that addresses the 
issue of explicit non-stationary harmonic modeling of the 
ECG signal component. The motivation behind this approach 
arose from audio signal processing, where a similar scenario 
featuring a mixture of a quasi-harmonic signal component 
and a stochastic perturbation is often dealt. Herein, we 
model simultaneously both amplitude and frequency 
changes in the ECG signal component by means of a time-
variant harmonic structure whose mean fundamental 
frequency is kept constant in the analysis window. It is 
shown that the time changes in an ECG harmonic are 
correctly captured by two constant-coefficients cubic 
polynomials each modulating a sine and a cosine function, 
respectively. 

2. PROPOSED METHOD  
 
2.1 ECG–EMG Mixture Signal Model: 

We assume that the mixture signal S (t) can be represented 
as a superposition of the ECG and EMG components and the 
measurement noise e (t) 

     S (t) = SECG (t) + SEMG (t) + e (t)                                                    (1) 

The EMG component is a random signal usually modeled as a 
Gaussian white noise whose power spectral density is 
modified by a time-variant filter. 

The SEMG (t) and e (t) are often treated as a single component 
because they can be distinguished only if adequate noise 
models are known prior (which is usually not the case). The 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

                Volume: 07 Issue: 07 | July 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4970 

SECG (t) is a deterministic component whose signal model we 
will describe thoroughly in the following subsection.  

2.2 ECG Signal Model:  

We know that an ECG represents a non-stationary quasi-
periodic time waveform. Due to quasi-periodicity, the time 
waveform will present some periodic (harmonic) 
components. Due to non-stationary, some amplitude and 
frequency time variations will appear superimposed to those 
periodic components. Those variations are usually classified 
as interbeat (RR-interval) and intrabeat (morphology) 
changes. The former accounts for instantaneous frequency 
variation, which can be provoked by a number of 
phenomena generally known as heart rate variability (HRV). 
The latter encompasses the instantaneous amplitude 
changes, which are often related to time variability of the 
QRS complex due to respiration. If we denote the 
instantaneous frequency and amplitude time variations by 
f(t) and a(t)respectively, then the following signal model 
completely characterizes the ECG component: 

 𝑆𝐸𝐶𝐺 (t) =  𝐴𝑘(t)sin[2π𝑓𝑘(t)(t)] 

𝑘

𝑘=1

 

                        (2) 

Where K is the number of harmonics and θk are the initial 
harmonic phases. Due to harmonicity, the instantaneous 
frequency can be expressed as fk (t)=k f0(t) where f0(t) is the 
instantaneous fundamental frequency. Determining fk (t) and 
ak (t) for each time instant might not be an easy task to 
perform, especially for a long-term analysis. However, if we 
assume that fk (t) and ak (t) vary slowly and continuously in a 
short analysis window, then (2) can be reformulated in a 
compact and efficient.  Recalling Cos (x+y) = Cos x Cos y-Sin x 
Sin y, we can rewrite (1) as  

𝑆𝐸𝐶𝐺 (𝑛) =  𝐴𝑘

𝑘

𝑘=1

 𝑡 sin 2𝜋𝑓𝑘 𝑡  𝑡  + 𝐵𝑘 𝑡 cos⁡[2𝜋𝑓𝑘 𝑡  𝑡 ] 

                (3) 

AK (t) = -at(t) Sinθk , Bk(t) = ak(t) Cosθk                                      (4) 

We will next assume that the amplitude and frequency 
parameters vary linearly in the analysis window of duration 
T: 

Ak(t) =A0
(k)+A1

(k)t, Bk(t)=B0
(k)+BA1

(k)                              (5) 

      f0(t)=f0+f1t, (-T)/2≤t≤T/2                                                    (6) 

      Accordingly, we can express SECG (t) as 

𝑆𝐸𝐶𝐺 𝑡 

=   𝐴0
 𝑘 + 𝐴1

 𝑘 t sin 2𝜋𝑘𝑓0𝑡 cos(2𝜋𝑘𝑓1𝑡
2)

𝑘

𝑘=1

+  𝐴0
 𝑘 + 𝐴1

 𝑘 t cos 2𝜋𝑘𝑓0𝑡 sin(2𝜋𝑘𝑓1𝑡
2)

+  𝐵0
 𝑘 + 𝐵1

 𝑘 𝑡 cos 2𝜋𝑘𝑓0𝑡 cos⁡(2𝜋𝑘𝑓1𝑡
2 ) 

                                                                                                        
(7)   

In (7), the trigonometric terms of the nonlinear argument 
encompass the contribution to the HRV by instantaneous 
ECG frequency deviation f1. This parameter depends on 
various phenomena that account for the changes in HVR 
spectra of short recordings (2–5 min) in high- frequency 
(HF), low frequency (LF), and very low frequency (VLF) 
bands. The HF band (0.15–0.4 Hz) accounts for the 
respiratory activity, while the lower bands (< 0.15 Hz) 
include physiologic oscillations associated with baro 
receptor reflexes (closely related to the Mayer waves). In the 
context of modeling instantaneous frequency by (6), it is 
clear that the most critical scenario corresponds to the HF 
band, which obviously gives rise to the largest f1 . We shall 
next show that the herein proposed model can properly 
capture instantaneous frequency variations corresponding 
to the HF band; accordingly, the discussion below will 
implicitly encompass f1 localized in lower bands. In the HF 
band, the most prominent effect related to f1 is respiratory 
sinus arrhythmia. This phenomenon is originated in the 
breathing process and gives rise to periodic respiratory 
frequency modulations in the interbeat interval series (IBI). 
In most cases, the modulation rate of the IBI series is in the 
range 2.5–8.3 s (corresponding to the breathing frequencies 
in 0.12–0.4Hz), while the mean modulation extent is 
typically 100 ms . Accordingly, for the ECG mean frequency 
(MF) f0   in the range 1–1.3 Hz (60–80 beats per minute), the 
frequency deviation f1   is around 0.05 Hz/s. Accordingly, if 
the analysis window is short enough, then (7) can be 
enormously simplified by applying the trigonometric 
approximation of a small argument 

𝑠𝑖𝑛𝑒 𝑥~𝑥, cos 𝑥~1 𝑓𝑜𝑟 𝑥 → 0 
 to the   sine/cosine    

terms of the nonlinear argument 

𝑆𝐸𝐶𝐺  𝑡 =  (𝐴0
 𝑘 

+ 𝐴1
 𝐾 𝑘

𝑘=1 𝑡) ∗ [𝑆𝑖𝑛 2𝜋𝑘𝑓0𝑡 +

                                      2𝜋𝑘𝑓1𝑡
2cos( 2𝜋𝑘𝑓0𝑡 ] 

+(𝐵0
𝑘+𝐵1

(𝑘)
t)*[cos(2πk𝑓0t)2πk𝑓1𝑡

2sin(2πk𝑓0 t)] 

(8) 

      Reordering the last expression, we obtain the final ECG 
model 
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SECG t = k
k=1  α

(k) t  Sin 2πkf0t) 

                     +β(k)(t) Cos(2πkf0t)                                    (9) 

α
(k)(t)=∑3

i=0 αi
(k) ti= A0

(k)+A1
(k) t-2πkf1B0

(k)t2 

                                             -2πkf1B1
(k)t2                                                                    (10) 

β(k)(t)=∑i=0
3βi

(k)ti=B0
(k)+B1

(k)t-2πkf1A0
(K)t2 

                                             +2πkf1A1
(K)t2                                           (11) 

 The model (9) means the harmonic stationary f0 – basis 
modulated by the third-order time polynomials. Unlike (2), 
both amplitude and frequency time variations are compactly 
characterized by the polynomial coefficients in (10) and (11). 
As a result, (9) is linear in parameters, and can be easily 
estimated by solving a linear system of equations. In order to 
check the validity of the small-argument approximation in 
(9), we have evaluated the sine/cosine approximation quality 
as a function of T in the following way: 

𝜀𝑠 =  
 𝑠𝑛

2
𝑛

 (𝑠𝑛− 𝑥𝑛 )2
𝑛

      𝜀𝑐 = 
 𝑐𝑛

2
𝑛

 (𝑐𝑛− 1)2
𝑛

                                (12) 

Where 

𝑠𝑛 = 𝑠𝑖𝑛 (𝑥𝑛 ), 𝑐𝑛 = 𝑐𝑜𝑠  𝑥𝑛  ,   

𝑥𝑛 = 2𝜋𝑓1𝑡𝑛
2, 

 
And tn are uniformly distributed time instants in the range  

 [– T/2, T/2]. The error terms  
εs , εc 

(12), evaluated in 
decibels, are shown versus the duration of the analysis 
window T in Fig. 1. Both curves follow a descending trend 
because the longer the window the larger the sine/cosine 
argument. Very short windows (T < 0.4 s) provide extremely 
high-approximation quality of more than 100 dB. Such high 
quality, however, is not really necessary in clinical 
applications. In fact, for T = 2 s, the approximation quality is 
settled around 40 dB, which is still very good for the present 
application, as will be shown in the experimental section. 

3. MODEL ESTIMATION  
 
  An implementation of (9) requires an estimation of the 
following parameters: f0, αi

(k)and βi
(k) for i=0-3 and k=1,2…k. 

The estimation process has been performed in two steps: 1) 
the estimate f0 is obtained, and 2) f0 is inserted in (9) and the 
corresponding linear system is solved for αi

(k)and βi
(k). 

3.1 Frequency Estimation: 

The mixture (1) is similar to voiced speech it means that it 
contains a deterministic quasi-harmonic component 
corrupted by noise. In voiced speech the deterministic 
component represents the vocal tract excitation and its 
fundamental frequency is usually called pitch. If we associate 
the concept of pitch to the ECG fundamental frequency f0, we 

can obtain f0 by means of some pitch estimation algorithm. 
The approach based on difference function is very popular 
due to its simplicity and computational efficiency. It aims to 
detect regular dip patterns in the cumulative mean 
normalized difference function of a windowed signal 
segment. Then, the corresponding pitch is estimated as a 
distance between the contiguous dips. Formally, the 
cumulative mean normalized difference function Dt(T) is 
defined as 

 

𝐷𝑡(T)  =     
1,                       𝑇 = 0           

𝐷𝑡(T)

 𝑑𝑡(𝑚)𝑇
𝑚=1

     ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

              (13)  

With Dt(T) is an ordinary difference equation:   

𝐷𝑡(T)   =  [𝑠 𝑚 − 𝑠 𝑚 + 𝑇 ]

𝑡+𝑇

𝑚=𝑡+1

 

                                (14) 

The function Dt(T) efficiently compensates for imperfect 
periodicity. EMG component is usually energy-dominant over 
the ECG component during the experiment. Consequently, it 
can happen that some noise- induced high-order dip in (13) 
gets more pronounced than the period dip. This gives rise to a 
wrong f0 estimate and accordingly the model (9) is degraded. 
Fortunately, most of the EMG energy is clustered out of the 
typical ECG frequency band up to 50–60 Hz. Therefore, a 
simple low-pass filter will reinforce the ECG and weaken the 
EMG component. A linear-phase 20th-order finite-impulse 
response filter with the 20-Hz cut-off frequency proved to be 
an adequate tool for simultaneously preserving the quasi- 
periodicity in the ECG component and reducing the 
interference level from the EMG component. Once is low-pass 
filtered, f0 is estimated by (13). 

3.2 Polynomial Coefficients Estimation: 

The coefficients αi
(k)and βi

(k) from (10) and (11) are 
efficiently estimated by means of the linear least-squares (LS) 
algorithm applied to (9) in the matrix form 

S=M λ + ε                                                                                   (15) 

       where λ is the coefficient vector given as (16) 

 𝜆 =   𝜆(1)  𝜆(2)   …   𝜆(𝐾) 
𝑇

                                        (16) 

𝜆 𝐾 =   𝛼0
 𝑘    𝛼1

 𝑘    𝛼2
 𝑘    𝛼3

 𝑘    𝛽0
 𝑘    𝛽1

 𝑘    𝛽2
 𝑘    𝛽3

 𝑘  
𝑇

 

                                                                                          (17) 

M is the signal model matrix which can be written as 

𝑀 = 𝑀𝑠
(1)

 𝑀𝑐
(1)

 𝑀𝑠
(2)

 𝑀𝑐
(2)

…… . .𝑀𝑠
 𝐾 

 𝑀𝑐
 𝐾 

                           (18) 
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MS

K = 

 

 

 
 

sin⁡(2πkf0t1 sin 2πkf0t2 . . sin⁡(2πkf0tN )

t1 sin 2πkf0t1 t2 sin 2πkf0t2 . . tN sin⁡(2πkf0tN )

t1
2 sin 2πkf0t1 t2

2 sin 2πkf0t2 . . tN
2 sin⁡(2πkf0tN

t1
3 sin 2πkf0t1 t2

3 sin 2πkf0t2 . . tN
3 sin⁡(2πkf0tN  

 
 

^T 

 

    (19) 

Mc
 K 

=

 

 
 

cos 2πkf0t1 cos 2πkf0t2  . . cos 2πkf0tN  

t1cos 2πkf0t1  t2cos 2πkf0t2 . . tN cos 2πkf0tN 

t1
2cos 2πkf0t1  t2

2cos 2πkf0t2 . . tN
2 cos 2πkf0tN 

t1
3cos 2πkf0t1 t2

3cos 2πkf0t2 . . tN
3 cos 2πkf0tN  

 
 

^T
 

 

           (20) 

The vectors s and ε contain the signal samples and stochastic 
perturbation, respectively. The solution to the LS problem is a 
vector of the sought model parameters: 

𝜆 = 𝑀+𝑆 

                                          (21) 

where M+ is the pseudo inverse matrix of M. The expression 
(21) can be evaluated in many different ways, among which 
we used the QR factorization of the over determined linear 
system M. Once the parameters λ are estimated, the EMG 
signal component is easily obtained as 

   

𝑆𝐸𝑀𝐺=S-Mλ 

                                      (22) 

4. SIMULATION RESULTS   

Simulation results of this paper is shown in bellow Figs.1 to 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig -1: Input Image 

 

 

 

 

 

 

 

 

 

 

 

 

Fig -2: ECG Signal After DC Drift Cancellation 

 

 

 

 

 

 

 

 

 

 

 

 

Fig -3: ECG Signal After LPF 

       

 

 

 

 

 

 

 

 

 

 

Fig -4: ECG Signal After HPF 
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Fig -5: ECG Signal After Derivative 

 

 

 

 

 

 

 

 

 

 

 

 

Fig -6: ECG Signal After Squaring 

 

 

 

 

 

 

 

 

 

 

 

Fig -7: ECG Signal After Averaging 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig -8: QRS Detection 

 

 

 

 

 

 

 

 

 

 

 

 

Fig -9: CASE 

5. CONCLUSIONS 

 We have shown that explicit modeling of ECG as a time 
variant harmonic signal component is an adequate tool for 
removing cardiac artifacts in surface EMG signals. The 
strength of the proposed approach is founded in a correct 
characterization of instantaneous amplitude and frequency 
changes in the ECG, typically due to HRV and QRS complex 
time modulation.  

It was shown that in a short analysis window, the ECG can 
be described by a simple analytical formulation containing 
low-order polynomials and harmonically related stationary 
Sins and cosines. The ECG model parameters are efficiently 
estimated from a linear system of equations by means of QR 
factorization. 

 Experimental comparison results, regarding both artificial 
and real-world signals, show that in the analysis bandwidth 
0–20 Hz, the proposed method outperforms the reference 
methods, as it introduces the smallest distortion in the EMG 
signal component.  
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