
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3867

Infrastructure as Code: A Devops First Approach

Shivam1, Poornima Kulkarni2

1Shivam, Student, Dept. of ISE, RVCE
2Poornima Kulkarni, Asst. Professor, Dept. of ISE, RVCE

---***---

Abstract - Infrastructure as code (IaC) is a set of methods
which make use of “code (in lieu of than manual operations)
for getting setup with (virtual) machines as well as networks,
installing dependencies, and configuring the development and
production environment for the tool or software at hand. The
infrastructure controlled by this code includes both the
physical machines (“bare metal”) and virtualized machines,
docker containers, software-defined virtual networks. This
code should be developed and managed using the same version
control system as any other repository, for illustration, it
should be constructed, tested, and warehoused in a version-
controlled repository.

Even though IT operators have long used automation by the
use of ad hoc scripting for tasks, IaC technology and practices
emerged with the introduction of cloud computing, and
particularly infrastructure-as-a-service (with big names like
Google and Microsoft offering their own cloud infrastructure
services). While cloud-based service providers enable the
administrative console that abstract an interactive application
on top of REST APIs, it is not feasible to use a management
console to create an automated system with more complex
nodes. For example, creating a new virtualized resource using
Microsoft Azure requires an IT operator having to step
through 4 web-forms and filling some 20 or more fields. VMs
are created and torn down many times during the day with
deployment and tests running continuously, so performing
these tasks physically is not advisable

Key Words: IaC, Docker, REST APIs, Terraform

1. INTRODUCTION

IaC code can be used common throughout development,
integration, and production environments. This improved
environment parity and can remove scenarios where
software works in one developer’s environment but not for
another developer, or scenarios where software works in
development but not in the integration or production
environment. The infrastructure code used for IaC ought to
be stored in a version-controlled repository. This enables
vigorous versioning of a deployed infrastructure: Any
adaptation of the infrastructure can be produced using the
IaC code corresponding to the desired edition. Together,
automation and versioning deliver the potential to recreate a
composition efficiently and consistently. This can be used to
roll back a switch made during development, integration, or
just as production and to support trouble-ticket regeneration
and debugging. IaC be able to empower an IT operation put

into put into practice called immutable infrastructure. In a
traditional operations approach, infrastructure and
application software is connected on individual nodes.
Overtime, each node is individually patched, software is
updated, and network and other configuration parameters
are increased as needed. Configuration drift may develop, for
example, as the patch up level varies across nodes. In a few
advanced cases, nodes can be recreated just from a backup,
with no means to reconstruct the structure from scratch. In
an immutable infrastructure, patches, revises, and
configuration changes are never put into the deployed nodes.
Instead, a new version of the IaC code is built with the
alterations that reflect the needed changes to the deployed
infrastructure and applications. Environment parity allows
the new version to be assessed in development and
integration environments preceding to production, and
environment versioning make available the new changes to
be rolled back if there is an unanticipated issue after
deploying to production. Each of the highlights about IaC
become our purpose for this project.

2. MOTIVATION

IaC is closely related to DevOps. By computerizing the
creation of execution/test environments, IaC practices
promote agile values. Reduce the time that is between
committing a shift to a system and the shift being placed into
production, while ensuring elevated excellence greatly
enhances software development.

The aim of the study is to develop code repository for
provisioning of virtualized resource instances for all
machines involved in the product deployment and integrating
them to the existing developer pipelines. Added effort of
resource provisioning and setup of those resources can cause
hinderance to development effort. This could likely cause
developers to skip integration tests altogether. Enforcement
of such checks can only be made feasible if the entire
operation is automated and well-integrated into the testing
pipeline. This should help in enforcing more quality checks
and discovery of bugs and issues will be quicker and reliable.

3. LITERATURE SURVEY

A systematic learning about the mapping of existing IaC
pillar technologies which had already helped rapidly deliver
software and service to the consumer, [1] talks about the IT
giants such as GitHub, Facebook, Mozilla Firefox, , Google and
Netflix premier who have implemented IaC and collection a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3868

set of complex artifact information about DevOps and its
insights.
[2] talks about various frameworks/tools for infrastructure
as code, adoption of IaC, empirical investigations which are
related to infrastructure as code. According to [3]s analysis,
50% of the studies publication reports propose to choose a
framework or tool which implements the practice of IaC or
to some extend provide the capabilities of some previously
existing IaC tool.
[4] findings lead us to believe that framework or tools is a
well-premeditated topic and research about the faults and
security flaws can have major significances for the
production positioning and development environments
involved in DevOps, it is well observed that the need for
studies and research in this area is important and much
needed.
[5] talks about how IaC is recent approach that and intend to
improve collaboration between the development team and
IT operation teams and create a channel for efficient
communication and understanding. The studies involved are
for the current frameworks which support such dimensions
of operations. The approaches are compared and the tools
like Chef and Puppet, are evaluation for coherency with
existing CI/CD pipelines.
The lessons learned in [6] are those which allows use to
create a set of concrete practices that would assist in
transitioning from existing traditional approaches to an
automation process of continuous software delivery.
Works in [7] are primarily focused in proposing abstract
frameworks, which are designed to create a consensus to the
ownership of DevOps characterization and their features.
Some components such a collaboration as a philosophy and
monitoring have surfaced as part of the study and are well
discussed to and event approach.

4. PROPOSED METHOD

To develop the system required to automate the task at

hand, the setup of virtual infrastructure with services pre-

installed and in a ready to deploy stage, use of open source

tool Terraform was chosen.

The workflow around terraform was divided into three parts

where the first part is Code. During this phase, a declarative

language is used to define out end state, this includes all the

attributes and properties of the desired infrastructure. The

second phase is the plan phase, it used a Terraform

command and it is essentially to validate our declarative files

and run static as well as dynamic checks on the code

repositories. It also calculates the delta between the current

resources available and the resources desired, thus only

provisioning those added or modified.

The third and final stage for our task becomes the apply
phase where our resource configuration and API tokens are

used to communicate with real world cloud provider API
end-points and work with those end points to deliver us the
resources we defined. This phase entails certain output
variable and is essentially another module in the Terraform
binary.

5. RESULTS AND ANALYSIS

This section deals with the results obtained by putting the
developed system into a production like environment and
monitoring its performance. An analysis of the results thus
obtained is examined and the impact of the new in placed
system is checked against the existing solution. Thus, the
automated provisioning and setup is put to test against
manual operation and configuration, and the pre-established
objections are verified in parallel.

5.1 RESULTS

The outcome of the project as already defined in the initial
chapters would be a pipeline whose task is to provision and
setup virtual machines for the integration tests to run. The
given pipeline had various specifications which were
required to be met. The outcome of the project could only be
achieved by following the planned strategy and
methodology, achieving the objectives is described in the
given order.

The major outcomes of this project were:

1. Pipeline in place and coherent with existing CI/CD
pipelines.

2. Pipeline definition defined and jobs of the pipeline
limited only to the action of context required.

3. Mindful resource management by the pipeline, this
means that resource be destroyed as soon as their
scope of use is closed.

The consequences and results of the objectives established:

1. A completed successful build for the pipeline
artifacts. The artifacts in concern are mainly the
terraform resource files, the python modules
created to install dependencies and test scripts
written in various languages.

2. Importing of successful build artifact from the build
pipeline to the release pipeline. This object is
straight forward but involved manual configuration
as of now.

3. Displaying output visualization in the form of
debugged json files, the output JSON can be scanned
for the credentials and log file paths.

4. Successful start-up event messages from each of the
services which are launched on the virtual
machines.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3869

5. Each of the microservices setup should be alive
when checked through the health status API. The
microservice should be containerized in its
environment and should be able to communicate on
the desired API port.

6. Understanding the flow of data through the pipeline
and understating the resource life cycle for the
virtualized resources, the resources are not limited
by hardware but the network as well as data
resources.

7. The resolution of identified issues during the
knowledge kit transfer is the seventh objective.

8. Integration of existing pipeline of build and release
with the newly created testbed pipeline. Testbed
pipeline here refers to the CI runner which executes
the MakeFile targets.

9. Report collection at a central place and visualization

through a common dashboard.

Though not explicitly mentioned the results also showcase
the benefit of time and effort that was the direct result of this
study.

5.2 COMPARATIVE ANALYSIS

The current method of manual provision and setup which
was being use since the release of the first beta version has
been overcome in its limitations and barriers. The major
highlights that are overcome by the new system in place are:

1. Manual effort reduced by 90% during the operation.
2. Time required for the effort reduced by 50%.
3. Amount of developer time saved for each testing

phase 2-man days.

Benefiting from these advantages would again allow the
consumer of this system to:

1. Have better enforcement of coding quality and bug
discovery.

2. Issues faced and barricades to VM provisioning
reduced by greater margin than expected.

6. CONCLUSION

The base motivation for the project was the limitation and
enhancements identify by the existing testing strategy, which
involved manual effort and crucial developer time. This
limitation was then translated to the requirement for the
project “automation provisioning of virtualized resources”,
to overcome the limitation faced by the existing developer
team. For teams which aim at using Terraform as a key
player to their changing management and deployment
pipeline, it becomes crucial to identify a orchestration
terraform module which can also deal with some category of

automation in order to guarantee consistency flanked by
runs, and deliver interesting insights about such
deployments. The project was successful in bring about this
automation and should be considered while implementing
any future endeavours of the same nature.

REFERENCES

[1] Terraform by HashiCorp stack

https://terraform.io/document/api/v2/refrence

[2] Waldemar Hummer, Florian Rosenberg, Fabio Oliveria.
“Testing Idempotence for Infrastructe as code”
Springerlink . LNCS volume 8275, (2003)

[3] O. Lavriv, M. Klymash, G. Grynkevych, O. Tkachenko and
V. Vasylenko, "Method of cloud system disaster
recovery based on "Infrastructure as a code"
concept," 2018 14th International Conference on
Advanced Trends in Radioelecrtronics,
Telecommunications and Computer Engineering
(TCSET), Slavske, 2018, pp. 1139-1142.

[4] Juve G, Deelman E. Automating Application Deployment
in Infrastructure Clouds. Cloud Computing Technology
and Science (CloudCom). IEEE Third International
Conference on. Athens: IEEE; 2011. p. 658-65.

[5] 2. Zhang R, Shang Y, Zhang S. An Automatic Deployment
Mechanism on Cloud Computing Platform. Cloud
Computing Technology and Science (CloudCom). IEEE
6th International Conference on. Singapore: IEEE; 2014.
p. 511-8.

[6] Jan Stanek, and Lukas Kencl, “Enhanced Secure
Thresholded Data Deduplication Scheme for Cloud
Storage”, IEEE Transactions on Dependable and Secure
Computing, Vol.15, Issue.4, pp.694-707, 2017

[7] Nguyen Cong Luong, Ping Wang, Dusit Niyato, Wen
Yonggang and Zhu Han, “Resource Management in Cloud
Networking”, IEEE Communications Surveys &
Tutorials Vol.19, Issue.2, pp.954-1001, 2017

[8] A. Rahman, "Anti-Patterns in Infrastructure as
Code," 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST),
Vasteras, 2018, pp. 434-435.

[9] M. Guerriero, M. Garriga, D. A. Tamburri and F. Palomba,
"Adoption, Support, and Challenges of
Infrastructure-as-Code: Insights from Industry,"
2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Cleveland, OH,
USA, 2019, pp. 580-589.

[10] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero and D. A.
Tamburri, "DevOps: Introducing Infrastructure-as-
Code," 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-
C), Buenos Aires, 2017, pp. 497-498.

[11] V. Shvetcova, O. Borisenko and M. Polischuk,
"Domain-Specific Language for Infrastructure as
Code," 2019 Ivannikov Memorial Workshop
(IVMEM), Velikiy Novgorod, Russia, 2019, pp. 39-45.

