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Abstract - Cryptographic hash functions arbitrarily 
compress long messages to mutates a short and fixed length, 
which are significant due to their use in data integrity, 
message authentication, and also in key generations 
(Symmetric and Public-key Cryptosystems). Many of the 
existing hash functions are designed to evaluate a finite 
domain compression function in a mode of operation, and the 
compression function itself is mostly based on block ciphers or 
permutations. This modular design approach allows for a 
rigorous analysis of security through both cryptanalysis and 
proven security. Different cryptographic implementations 
depend on the performance and strength of the hash functions 
to satisfy the need for integrity and authentication. This 
research paper provides an overview and importance of 
cryptographic hash functions in this field with their 
architectures, various attacks and progressive 
implementation. Hash functions selected in projects NESSIE 
and CRYPTREC are addressed briefly. SHA-3 Selection 
initiative is also enacted.  

 
Key Words:  Cryptography, Hash functions, Data integrity 
and Network Security. 
 

1. INTRODUCTION 
 
Network Security means protecting User confidentiality, 
integrity, and resource availability[1]. Network Security 
initializes with authorization i.e. with the help of 
credentials such as a username and a password to access a 
specific device commonly. Network security consists of 
policies each network administrator has adopted to 
prevent and track illegitimate access privileges, alteration 
and denial of a computer network and network resources. 
When a user is approved to do something else, a firewall 
will require them to follow rules such as what resources the 
network user is allowed to access. Thus, these policies are 
reasonable to prevent unauthorized access to the device, 
but this component may fail to track potentially dangerous 
content such as software warms or network transmission 
of Trojans. 

Anti-virus or Intrusion Detection System (IDS) software 
helps to detect the Malware. Communication between two 
hosts using a network can be used to encrypt a privacy 
policy.   However   apart   from    encryption-decryption    
techniques,    hash functions are ubiquitously used for 

authentication. The world is becoming more 
interconnected with the Internet and with modern 
developments in networking. A substantial  percentage  of  
information  and  networking   infrastructure   and   
services available worldwide are personal, military, 
commercial,  and governmental. As such, it is important to 
find out who will be transmitting critical data and who will 
be receiving it, the accountability policies take care of it as 
well. But it is an underlying and un-manipulated way of 
identifying that data received by one user is sent by the 
valid user, or the data received. All these issues are solved 
by using hash function to demonstrate the validity of the 
data and the user. 

A cryptographic hash function maps a binary string of 
variable length (a message or a file) to a binary string 
(message digest) of fix length n, with n sometimes indicated 
in the name of the hash function algorithm (SHA-256, SHA-
512, RIPEMD-160, etc.). Hash functions are used in 
cryptography for data integrity and message (data origin) 
authentication. 

1.1 CRYPTOGRAPHIC HASH FUNCTIONS 

The word “ hash function", used in computer science, 
refers to a function which compresses an arbitrary length 
message to a fixed-length message called the Message 
Digest.  Nevertheless,  if  it  fulfills  any  additional  criteria,  
then  it  can   be  used   in cryptographic applications and 
then called as the Cryptographic Hash functions. 

Cryptographic Hash functions are the most powerful 
tool in the Security and Cryptography stream and are used 
to achieve many security requirements such as 
authentication, digital signatures, generation of pseudo 
numbers, digital time-stamping, etc. 

There are two types of Hash functions: Keyed and Un-
Keyed. Keyed hash functions use a hidden key to compute 
the message digest and these are also known as MAC 
(Message Authentication Code) but we don't use any secret 
key in almost any. 

Merkel defined one-way hash function (OWHF)[2] as that a 
hash function H meets the following requirements: 

1. H can be applied to Block of data of any length. 
(any length means size of Block must be greater 
than size of Digest we conclude at the end). 

2. H produces a fixed length output i.e., Message 
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Digest. 
3. Given H and x (any given input), it is easy to 

computer Message Digest H(x). 
4. Given H and H(x). it is computationally infeasible 

to find x. 
5. Given H and H(x), it is computationally 

infeasible to find x und x ' such that H(x)=H(x') 
 

For practical implementations of hash functions for 
message authentication and digital signatures the first 
three specifications are a must. Also known as the pre-
image resistance or one-way property, the fourth 
requirement states that generating a message code from a 
given message is easy but hard to generate a message back 
from the given message digest. Also known as the Second 
Pre-Image Resistance or Collision Resistance Property, the 
fifth condition guarantees that an alternative message that 
has to the same code as a given message cannot be bound. 

1.2 Usage of Hash Function 
 

Hash functions are used in combination with digital 
signature systems to ensure data integrity. The message is 
initially hashed, and then the hash-value (message digest), 
as a representative of the message, is signed instead of the 
original message. This saves time and space compared to 
signing the entire message (block by block) in this way. 

The hash value (message digest) corresponding to a 
particular (original) message is initially determined. In 
certain cases it preserves the credibility of this hash-value 
(but not the message itself). After, the following check is 
performed to determine whether the message has been 
changed, i.e. whether a message is the same as the original 
message. The message's hash value is calculated and 
compared to the protected hash value; if they are equal, one 
accepts that the inputs are also equal, and therefore the 
message was not altered. This reduces the question of 
maintaining the credibility of a potentially big message to 

that of a small fixed-size hash value
[3]

. 

In order to be effective from a cryptographic point of 
view a hash function must fulfill certain requirements: 

(a) to be difficult for two distinct messages to have the 
same hash value 

(b) Knowing a hash value to be computation infeasible is 
to find a message with that hash value. 
 

2. Structure of Hash Function 

Different hash design structures are feasible, but we will 
rely on only two designs which are mainly used in all NIST 
standardized hash functions. They are: 

a) Merkle-Damgard Iterated Hash Design and 

b) Sponge Construction 

 

 

2.1 Merkle-Damgard Construction 

From the early onset of cryptographic hash functions, 
designers relied on the Merkle-Damgård construction 
(abbreviated to MD). In 1989 the MD architecture was 

independently discovered by Merkle
[4]  and Damgård[5] . 

Most of the famous hash functions like MD4
[6]

, MD5
[7]

, SHA-

0[8], SHA-1
[9]

, RIPEMD-160[10] and so on follow the iterative 
MD method. The central component of this construction is a 
compression function that takes a fixed input length value, 
and outputs a fixed-length hash value. 

                           

A compression function accepts two inputs: a chaining 

variable, and a message block. Let f : {0,1}
b  

x { 0,1}
n   

->{0,1}
n  

be  a  compression  function  which takes  a  b-bit message  

block  and  an  n-bit  chaining  value.  Let  h: {0,1}
* 

be   a MD 

construction built by iterating the compression function f in 

order to process a message of arbitrary length. A message M 

to be processed using h is always padded in a manner such 

that the length of the padded message is a multiple of the 

block length b of f. Bit-length b corresponds to input length of 

desired compression function f. The padding is done by 

adding after the last bit of the last message block a single 1-

bit followed by the necessary number of 0-bits. Let |M| 

be a binary representation of the length of the message M. 

The binary encoding of the message length is also be added to 

complete the padding. This is called a Merkle-Damgård 

strengthening. Then input M subsequently divided into t 

blocks, each of bit-length b. 

The hash function h can then be described as follows: 

                              

where f is the compression function of h, Hi is the 
intermediate chaining variable between stage i-1 and stage 
i, and H0 is a pre-defined starting value or the initial. value 
IV. The block diagram of the iterative hash function using 
the compression function is shown in the Fig.1. The 
computation of the hash value is dependent on the chaining 
variable. At the start of hashing, this chaining variable has a 
fixed  initial value which is specified as part of the 
algorithm. 
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This process goes on recursively, with the chaining 

variable being updated under the action of another part 

of the message until the whole message is used. The 

chaining variable's final value is then output as the 

corresponding hash value for that message. One of its 

distinctive features is that it promotes the compression 

function's collision resistance and pre-image resistance 

to the full hash function: For example, a collision on the 

compression function can be effectively deduced from a 

collision on the full hash function. For this situation, the 

inclusion of the length at the end of the message is 

important and is also important in order to prevent 

several attacks, including long-message attacks. 

Merkle-Damgård construction proves that hash 

function safety is based on compression function 

security. Thus, designing a collision-resistant 

compression function is enough to build a collision-

resistant hash function. Nonetheless, recent studies 

illustrate some inherent shortcomings of the MD 

method. This  includes being vulnerable to multi-

collision attacks
[11]

, long second pre-image attacks
[12] 

and an attack on herding[13].  A detailed view of the MD 

construction is shown in Fig.2. 

 

2.2 Sponge Construction 

G. Bertoniet
[14] proposed the construction of a 

sponge to design hash functions that map the random 

oracle. The construction of the sponge operates at the 

state of b= r + c bits, r is called bit rate and c is capacity. 

All bits of state are initially set to zero, and the message 

is padded and separated into blocks of r bits each. 

Sponge construction   then   proceeds   in   two   phases:   

Absorbing   Phase   and   Squeezing Phase. In the first 

phase, at a given rate, the input is "absorbed" into the 

hash state, then at the same rate an output hash is 

"squeezed" from it. To absorb data bits r. The data is 

XOR into the state 's leading bits, and the block 

permutation is used. 

To squeeze, the first r bits of the state are produced 

as output, and if the additional output is needed, the 

block permutation is applied. Capacity c of hash function 

is  key to the Sponge Construction, and it can be 

modified according to security requirements. 

SHA-3 final round candidate algorithm Keccak is a 

Sponge construction only hash function and it sets a 

conservative c=2n where n is the output hash size. 

        

3. Properties of hash functions 

In this section we are shortly presenting the hash 
functions evaluated and selected in NESSIE and CRYPTREC 
projects. 

3.1 NESSIE research project 

The NESSIE (New European Schemes for Signature, 
Integrity, and Encryption)[15], a European-funded IST 
initiative, aimed at selecting powerful cryptographic 
primitives of different types (block ciphers, stream ciphers, 
digital signature algorithms, hash functions, etc.). The 
project started with an open call for the submission of 
cryptographic primitives as well as methodologies for 
evaluation of those primitives. The call's spectrum was 
made public in March 2000[16]. The key selection criteria 
defined in NESSIE call for cryptographic primitives have 
been long-term security, market requirements, efficiency 
and flexibility. Along with the algorithms provided for 
evaluation, well established standard algorithms have been 
added for evaluation. Whirlpool algorithm for the category 
hash functions and UMAC and Two-Track-MAC for MAC 
was submitted. In February 2003, the project consortium 
NESSIE announced the final set of cryptographic 
algorithms. Whirlpool (proposed by Scopus Tecnologia S.A., 
Brazil, and K.U.Leuven, Belgium) and SHA-256, SHA-384, 
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and SHA-512 (added for testing, part of the USA FIPS 180-2 
standard) were chosen in the category of hash function. 

The SHA (Secure Hash Algorithm) hash functions are a 
set of cryptographic hash functions designed by the 
National Security Agency (NSA) and published  by the NIST 
as a U.S. Federal Information Processing Standard. The 
three SHA algorithms (SHA-0, SHA-1, and SHA-2) have 
different structures. The SHA-2 family uses an identical 
algorithm with a variable digest size i.e. SHA-256, SHA-384, 
and SHA-512. SHA-2 family returns a number of bits 
identical with the number in the name and uses for 
operation messages not longer than 264-1, 2128-1, and 
2128-1 bits respectively. 

Whirlpool is a Square block cipher based hash function 
(also used to design Rijndael which was selected as the 
Advanced Encryption Standard ( AES)). Whirlpool returns a 
512-bit digest from a message which can have a total of two 
256 bits. As part of the joint international standard ISO / 
IEC 10118-3 (International Organization for 
Standardization (ISO) and International Electro technical 
Commission ( IEC)), Whirlpool was adopted. 

 

 Two-Track-MAC (proposed by K.U.Leuven, Belgium and 
debis AG, Germany), UMAC (proposed by Intel Corp., USA, 
Univ. of Nevada at Reno, USA, IBM Research Laboratory, USA, 
Technion, Israel and Univ. of California at Davis, USA), and, 
CBC-MAC (ISO/IEC 9797-1) and HMAC (ISO/IEC 9797-1) 
have been selected at MAC category (last two, have been 
added for evaluation as MAC standards.) 

3.2 CRYPTREC IPA research project 

The Information-technology Promotion Agency (IPA) 
in Japan has introduced the CRYPTREC project 
(CRYPTography Study and Evaluation Committees) with 
the aim to establish standard cryptographic algorithms for 

use within the Japanese e-government infrastructure.
[17]

 

CRYPTREC Project began in the year 2000. The formal 
Call for Cryptographic Techniques received various types of 
cryptographic techniques. 

As for the NESSIE project, the CRYPTREC call was 
available to different types of primitives. Some of the 
algorithms evaluated for the NESSIE project ( e.g. RC6, 
MISTY1, Camellia, AES) were also submitted for evaluation 
to CRYPTREC. In CRYPTREC, as in the evaluation of NESSIE, 
several well-known or common primitives were included 
for assessment. No algorithm has been provided for the 
hash function group. However, due to their use of internet 
security mechanisms the CRYPTREC team included MD5, 
RIPEMD-160, SHA-1 for evaluation. 

After evaluation, only RIPEMD-160, SHA-1, SHA-256, 
SHA-384, SHA-512 with a note for RIPEMD-160, SHA-1 was 
suggested in 2003, that if any cipher with a longer hash 
value is available, it is preferable to select a 256-bit (or 
more) hash function. This does not apply, however, in cases 
where the hash to be used has already been constructed 
according to the requirements of the cryptographic public-
key. 

• RIPEMD-160 is a 160-bit message-digest 
algorithm (and cryptographic hash function) developed 
in K.U.Leuven (Belgium) and first published in 1996. It is 
an improved version of RIPEMD, and uses the design 
principles of MD4 and has performance similar to SHA-1. 

• 128, 256 and 320-bit variants of this algorithm are 
RIPEMD-128, RIPEMD-256 and RIPEMD320. The 256 
and 320-bit models reduce collision risks, without 
achieving a higher degree of protection compared to 
RIPEMD-160. 

 
 

Table II summarizes the hash function parameters which 
satisfy the CRYPTREC research project requirements. 

4. Attacks Targeting Hash Functions 

The properties of hash functions are defined in this 
section using the expression "Computationally Infeasible." 
Given the current computing power, all properties are 
fulfilled; as computing power rises each year, even though 
no new attacks are created, the increase in computing 
power weakens the resistance of current hash functions. 

Recently new attacks
[18]

have been released concerning 

collision resistance
[19] of hash functions. These attacks 

attempt to evaluate 2 messages using fewer operations 
which have the same hash. 

An attack on MD5
[20] was presented in 2005, using 

differential analysis, which allows effectively finding 
collisions. 

Applied on HAVAL-128, MD4, RIPEMD
[20]

, and SHA-0
[21]

, 
the same attack reduced the number of operations to 
determine a second message with the same hash. 

Even if the number of operations needed to split the 
hash functions is significant,  these attacks reduce the ideal 
number of operations that are supposed to be necessary. 
These results inspired NIST to discover new hash 

functions
[22] that were resistant. Other attacks are posed 

that address hash functions and message authentication 

codes
[23]

. 
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5. Hash Functions Based on Compression 
Functions 

In this section, we consider open problems related to 
the construction of compression based hash functions. This 
is also known as domain-extending or operating mode, 
where a compression function f is applied to a hash 
function H with a virtually infinitely large domain with a 
certain fixed and finite domain. 

The iterated hash function principle is central to many 
hash function designs: at the input of an initialization 
vector IV, the iterated hash function Hf[24], based on the 
compression function f, processes a padded message 
(M1,M2,.., Mk) as follows: 

H f (IV; M1, . . ., Mk) = hk, where: 

h0 = IV, 

hi = f(hi−1, Mi) for i = 1, . . . , k. 

This  principle  is  also  called  the  plain  Merkle-

Damgard(MD) design[25][26]. 

The specific padding rule for Merkle- Damgard ensures 
suffix-freeness by appending the length of the message in 
the last block. Popular hash functions including SNERFU, 

MD4
[27]

, MD5
[28]

, RIPEMD, HAVAL
[29]

,WHIRLPOOL
[30]

, the 

SHA family
[31]

, and numerous other hash functions have 
adopted the Merkle-Damg gleichard theory. In addition, 

other domain extensions such as HAIFA
[32] and dither 

hash
[33] expand the iterative method of Merkle-Damg by 

adding different counters or changing inputs to the 
compression function.[34] 

5.1 Ideal Model Security Results 

In the ideal model one assumes that the domain 
extensor H 's underlying compression function(s) f is an 
ideal function, namely a random oracle with a fixed input 
and output length[35]. These are commonly referred to as 
generic security results, which ensure no structural defects 
are visible in the hash function. 

There are two types of results on security.[36] One 
type of results includes proving a typical H  protection 
property atk when f is an ideal function and atk ∈ {col,sec, 
pre}. Similarly, we have protection tests of in-

differentiability
[37] where the aim is to prove that H itself 

behaves like a random oracle on arbitrary input lengths 
provided that f is an ideal function. In-differentiability is 
a better form of in-distinguishability (or pseudo 
randomness), which is only a meaningful notion when 
keyed with the algorithms (e.g. block ciphers). In-
differentiability comes therefore handy in the hash 
function setting most notably to allow one to obtain a 
bound on the adversarial 

advantage against some atk for H denoted as Adv  atk : for 
any hash function  security H 

notion atk:  Adv  atk ≤ Pr RO atk  +  Adv  H pro  ,  where  
Pr  RO atk  denotes  the success H 

probability of a generic attack against H behaving like a 
random oracle under atk. Coron et al. prove that the MD 
design with suffix-free padding and idealized compression 
function from a random oracle is not in-differentiable. 
Their observation formalizes the length extension attack: 
one  can compute H  (M||M’ ) from H (M)  and M’ and M' 
even without understanding M, which is highly 
undesirable for certain applications (note that padding 
allows abstraction here for convenience, but this can be 
easily addressed). The MD construction is, however, 
indifferent whether it finishes with a chopping function 
(where a part of the output bits is truncated) or a final 
transformation, either where the underlying compression 
function is optimal or where the hash function is based on 
a PGV compression function. It has also been shown  that 
the MD design based on an ideal compression function or 
idealized PGV construction, with prefix-free padding, is in-
differentiable from a random oracle. 

Nevertheless, security notions such as collision 
resistance are not retained in the regular model's MD 
design with prefix-free padding only. In the other hand, 
domain extenders that perform well on multiple protection 

of property, such as BCM
[38] and XOR-(linear) hash

[39]
, also 

lack a security review under the notion of in-differentiality. 

5.2 New Domain Extenders 

With the respective digest sizes, novel hash domain 
extensors based on compression functions need to come 
with at least comparable security and efficiency to SHA-2. 
Breaking the sequential structure is one way which may 
result in tree style designs. Known collision preserving 
tree-based hash functions are the (strengthened) Merkle 
tree[40], XOR-tree hash, and a variant of the trees preserving 
the latter second pre-image security[41][42]. Skein also comes 
with a tree alternative to the second round SHA-3 candidate 
hash function. 

Finally, we mention the tree hash functions of Rivest et 
al.[43] and Bertoni et al.[44] where the latter also studied the 
properties of tree hash functions necessary for obtaining 
in-differentiable designs. There are diverse directions in 
this area. Some of them include analysis of tree-based 
alternatives or generic transformations that turn into their 
parallel (-izable) counterpart a ready-made sequential 
domain extensor. Bertoni et al used a similar approach in 

the design of the Sakura
[45]

. 

6. CONCLUSIONS 

After the study, experiments, testing, and evaluation of 
the process and the program, it has drawn a remarkable 
conclusion. Cryptography and Hashing function's based on 
compression function's adds additional security to the 
system or device's. Among the three security results, Ideal 
Model Security results are proven to be the best by using 
domain extensor H's underlying  compression  function(s)  
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f  followed by next best results of New Domain Extender’s 
using novel hash domain extender’s based on compression 
functions and efficiency to SHA-2 and SHA-3. 
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