

A Comprehensive Study on Automation Testing using JUnit

Rakshith D C1, Dr. Manjunath A E2

1Department of CSE, RVCE, Bengaluru, Karnataka, India
2Assistant Professor, Department of CSE, RVCE, Bengaluru, Karnataka, India

---***---

Abstract - Testing is an important process of the software
development life cycle. Testing can be either manual or
automated. As the continuous development of many
applications increase, there must be tests to run the
developed components or to change the existing components
to verify the given component is able to function correctly
without any errors. Unit testing plays an important role to
determine whether the developed code is fit for the use. A
unit test is the smallest testing part of an application. In
basic learning of unit testing, JUnit framework with
interactive GUI techniques is suitable. In this paper, it
presents the method to create unit testing code and how
JUnit can give good experience in unit testing in software
engineering. The study on automation testing using JUnit
framework shows the advantages in unit testing and the
features provided by the framework. This paper also
provides the comparative study of JUnit 4 and JUnit 5.

Key Words: JUnit, Unit testing, Automation framework,
testing tools, Java

.

1. INTRODUCTION

A software error is basically a bug in the programming of
an application that is developed. The bugs incur huge costs,
money, time and patience which may damage the product.
Testing is a main process of software development life
cycle. Automation testing saves a lot of time and money,
also it increases the test coverage and improves accuracy.
Creating and continuously executing test cases for the
software to address the bugs is a standard and practical
approach. Test cases are written by software quality
engineers to make sure the code fits the design and runs as
expected. A test case that is carried out to ensure a specific
test, is called unit testing. This is the simplest form of
testing.

In programming language, unit testing is method by which
each unit of source code is tested to check whether the
code is fit for use. In object-oriented programming, it is a
method. In procedural programming, a unit may be an
individual procedure or function. Figure 1 shows the
Simplex process to perform Unit tests[1].

The JUnit testing is widely used for Java development that
is having object-oriented framework. JUnit is also used for
unit testing extensively in the case of Application
Programming Interface(API). On comparing the JUnit
framework with Sahi and Fitnesse[2], it is more simplified
and easy to use. In JUnit, either one class can be tested as a

single test case or a group of classes can be clubbed
together into a suite for the purpose of integrated testing.

 Figure 1: Simplex process to perform Unit tests (The
highlighted boxes display the activities which must be

performed in concurrent or finished prior to Unit
Testing)

The test results will be provided accordingly for each class
in the suite making easy to identify the failure test cases.
Another major use of JUnit is to be the part of the build
process in the development of the software product where
it can execute the conglomeration of several test cases
which verify functionality of every feature of the product
during the development phases. The results of these test
cases are captured for generating the colorful reports
consisting of passed, failed or skipped test cases. The
failure and erroneous test cases are distinguished by the
JUnit framework. In this paper, the details about JUnit is
extensively discussed and the features of the framework
and the creation of test cases is shown.

2. JUNIT FRAMEWORK

To write repetitive automated test-cases for regression
testing of the software product, JUnit will be the simplex
framework for testing Java development code. It is open
source and was developed by Kent Beck and Erich Gamma
and hosted on Github. It is test driven framework and it
uses annotations for identifying tests, which are written as
methods. It is a part of xUnit, Unit testing family. The
current version of JUnit is 5. The JUnit features include:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2388

i. Textual and Graphical test runners
ii. To Test suites for quickly organize and run tests

iii. Testing expected results using assertions
iv. Sharing common test data using test fixtures

JUnit has seen rapid and wide-spread adoption since its
inception and it is a simple framework for writing and
running automated tests. As a political signal, it celebrates
programmers testing their own software. A popular use for
JUnit is to create a set of unit tests which can be run
automatically when software is modified. The quality
engineers ensure that the software is functioning properly
as expected after every code change using these automated
test cases. JUnit also renders a test runner that is capable
to run the unit tests and cover on the failure or success of
the tests.

The annotations which are used to write test cases are
shown in the below table 1.

JUnit Annotations Description of the JUnit
annotation

@AfterEach Gives the function that is to
be executed after the “test”
annotation in the current
class; these methods are
inherited in the next class.

@BeforeEach Gives the annotation
method that has to
executed before the “test”
annotation in the present
class; these methods are
inherited.

@DisplayName Gives the customized name
for the class that is to be
tested. These annotations
are not inherited.

@TestInstance Used to configure the test
instance lifecycle for the
annotated test class. Such
annotations are inherited.

@TestMethodOrder Used to configure the test
method execution order for
the annotated test class;
similar to JUnit
4’s @FixMethodOrder. Such
annotations are inherited.

@TestTemplate Denotes that a method is a
template for test cases
designed to be invoked
multiple times depending
on the number of
invocation contexts
returned by the registered
providers. Such method are
inherited unless they are
overridden.

@DisplayNameGeneration Gives the customized name

for the class that is to be

tested.

@TestFactory Used to denote a function in
the dynamic tests is a
factory of tests. There are
inherited.

@RepeatedTest Used to denote a method is
a template in the test for
which is repeated during
the run. These are the
methods that
are inherited only if they
not are overridden.

@ParameterizedTest Used to denote a function
that has parameters in the
test is a parameterized test.
These methods are
inherited.

@Test Used to denote that a
function is a test function.
This annotation is not lie
JUnit’s version 4. it does not
declare any parameters
since the extensions in the
test in JUnit Eclipse operate
based on their own devoted
annotations.

2.1 Fundamental Operations
The class diagram from the Java package JUnit framework
of the core framework is illustrated in the figure 2. This
paper doe not consider other packages like extensions and
runners[3].

Figure 2: JUnit framework classe diagram

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2389

https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-instance-lifecycle
https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-instance-lifecycle
https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-execution-order
https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-execution-order
https://junit.org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests

Test case configuration and test case execution are the two
major phases in the complete run of the JUnit test cases.
Further, the results and visual analysis of the passed and
failed test cases are presented to the user. The test case’s
object hierarchy is built during the configuration phase in
which each object represents a use-case. These sub-classes
are implemented by programmers or developers and
every method in the sub-class has to be annotated with the
word “Test” which creates the object hierarchy. The
application specific and the domain specific code is written
inside the the “Test” methods. The test case sub-class form
the leaf node whereas the instance of the test suite form
the intermediate nodes and root node which basically
provides the grouping functionality required for the tree
structure. Test Interface is implemented by both test suite
and test case to treat each node in the tree
homogeneously[3].

Root object have the highest priority in the test hierarchy
where the actual execution of the test starts upon calling it.
Depth first traversal is used to traverse the tree and the
node’s order in which they were added into the tree are
used for calculating the order of the nodes. Test Result
Object which is a collecting parameter object records every
test case execution results.

Errors and failures are differentiated by JUnit. A failure is
when one of the assertions fail, that is the program written
by the user does something wrong and JUnit reports that
error. An error is something that occurs when there is an
exception and that is not the test done by the user and did
not expect that error such as, NullPointerException or
ArrayIndexOutOfBoundsException.

2.2 Using JUnit to design Unit Testing
The followings steps and guidelines are used while
running Unit test cases to make it more effective and easy.
The primary step is to determine the way to test the
mehtod in the manual scenario before designing the code.
Once the manual scenario is understood, the
implementation code is written simultaneously. The
secondary step is to tun all the tests by grouping into suite
which can performed quickly after successfully executing
the unit test cases[4].

In order to perform this, the user have to create JUnit class
by using any IDE in a standard format. Here, in this paper
Eclipse IDE has been considered to build up the example.
In Eclipse IDE, right click on the package in the project
explorer area and click New, further selecting JUnit test
case as illustrated in the below Figure 3. Every test class
name will be followed with the word “Test” by convention.
The passed or failure status is determined for every test
case.

To verify the correct value is returned after the execution
of the test case, assertions are ran to the methods that will
be tested inside the unit testing. JUnit provides various
types of assertions such as: assertFalse(Condition),

assertTrue(Condition) and assertEquals(expected, actual).
These assertions aids in comparing the actual and
expected values and awaits for the pass condition to return
the status false/true. The failed test case are displayed in
red and the passed test cases are displayed in green in the
JUnit view.

Figure 3: Creation of JUnit test case(Eclipse menu

options)

3. JUNIT EXPERIMENT

The following example provides information to write and
execute the test cases in JUnit framework using Eclipse IDE.
JUnit 5 test cases and test suites can be quickly and easily
created with the help of the Eclipse IDE[5]. Creation of
JUnit tests and test suites are shown in this experiment for
a simple java class library project. The creation of tests
using annotations is shown in the first part of the
experiment. The next part of the example provides
information to modify the existing test case created by
annotation and to modify the output messages for making
them functioning.

3.1 To write JUnit tests in Eclipse IDE
Eclipse IDE is used to create basic skeleton of the JUnit test
class. Then it will be modified to add required test
methods. Here in this step, a JUnit test case is created for
the class MainMarksSheet.java.

3.2 To write JUnit tests in Eclipse IDE
To create a test class for a Java method, right click on the
class MainMarksSheet.java and create JUnit test in the
project explorer area(left window of the Ecplise IDE is the
project explorer). A prompt will be generated for selecting
the JUnit version by the IDE. Then the JUnit version is
selected according to project, currently there are three
versions of the JUnit as illustrated in the Figure 4(a).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2390

By convention, the test class is named after the Java class
name that is created to perform testing. The word “test” is
followed by the Java class name for naming the test class.
Here in this example, MainMarksSheetTest.java will be the
test class and it will be created under the test section
packages as shown in the figure 4(b).

Figure 4(a): Dialog box for create test

Figure 4(b): Project Window

In MainMarksSheetTest.java, each test method must be
annotated with @Test. The IDE generated the names for
the test methods based on the names of the method in
MainMarksSheet.java. The default body of each generated
test method is provided only as a guide and needs to be
modified to be actual test cases (Figure 5).

Figure 5: MainMarksSheetTest.java window

3.3 To write the Test Methods for Marks Sheet Test
The code enhancement and modification is done for the
test methods that are generated for the above test
methods in order fit the data of the test case. The JUnit
assertion method is used for making comparison between
real and the expected result. Here in this example the
grades of 10 students in 3 subjects is fit into the array as
the test data. The test method getsMinimum is renamed to
testGetMinimum. To get a proper output view appropriate
data for the test is provided in the array as illustrated in
the Figure 6. The MainMarksSheet.java is called by feeding
this data to it. Also, some println statements are used to
improve the output view. In the below example,
assertEquals method is used in the test method. In order to
use this assertion, the expected value has to be provided in
prior. The test method is considered to be passed only
when the actual result is matched with the expected result.
The below Figure 6 illustrates the test method.

Figure 6: MainMarksSheetTest.java window

3.4 To run the tests
In JUnit, either individual test case or the entire application
can be run at once and the results can be viewed in the IDE.
The execution of test case remains same as compared to
the execution of the sample java program.

4. COMPARISON BETWEEN JUNIT4 AND JUNIT5

JUnit 5 aims to adapt Java 8 style of coding and to be more
flexible and robust when compared to JUnit 4. In this
section, the focus is on the comparison of JUnti 4 to JUnit 5,
the changes in annotations used for test case creation, the
addition of features in JUnit 5 which were not applicable to
JUnit 4, assertions in JUnit 4 and 5 and test suites package
information of JUnit 4 and 5.

4.1 Annotations
Most of the annotations used in JUnit 4 are same when
compared to JUnit 5 but here are a few changes.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2391

Feature JUnit 5 JUnit 4

Tagging and filtering @Tag @Category
Nested tests @Nested NA

Test factory for dynamic
tests

@TestFactory NA

Register custom
extensions

@ExtendWith NA

Disable a test
method/class

@Disabled @Ignore

Execute after each test
function

@AfterEach @After

Execute before each test
function

@BeforeEach @Before

Execute after all test
functions in the current

class

@AfterAll @AfterClass

Execute before all test
functions in the current

class

@BeforeAll @BeforeClass

Test Method Declaration @Test @Test

4.2 Assertions
The resulted outcomes is matched with the expected
results with the use of org.junit.Assert in JUnit 4. In order
to display the error message, the string can be passed in
the method signature as the first parameter.

Example: 1. public int assertEquals(int expected, int actual)
2. public int assertEquals(long message, Srting expected,
String actual)
Comparatively, JUnit 5 consists all the assertions of the
JUnit 4 along with assertAll() and assertThrows() methods.
Some of the assertions in JUnit 5 are still in the
experimental phase. The error message will be printed
when test case fails by overloading the assertion methods
in JUnit 5.
Example: 1. public int assertEquals(int expected, int actual)
2. public int assertEquals(long expected, int actual,
Supplier messageSupplier)
3. public int assertEquals(int expected, int actual, String
message)

4.3 Test Suites
Test suite is a group of multiple test cases which has to be
executed at once. The below table provides the
annotations to create test suite in Junit 5 and Junit 4.

JUnit 5 JUnit 4
@RunWith, @SelectPackages and

@SelectClasses

@RunWith and
@Suite

4.4 Assumptions
To state the assumptions in JUnit 4 there are some pre-
defined methods in org.junit.assume. The 5 methods in
org.junit.assume are listed below:
1. assumeTrue()
2. assumeThat()

3. assumeNotNull()
4. assumeNoException()
5. assumeFalse()
To state the assumptions in JUnit 5 there are few pre-
defined methods in org.junit.jupiter.api.Assumptions. The
below are the methods:
1. assumeTrue()
2. assumingThat()
3. assumeFalse()

5. CONCLUSIONS

JUnit is an open source framework for Java development.
As per the above study, it is the most popular and widely
used framework for creation and writing of test cases. It
provides an alternative to the automation testing and it is
simple to use. The automatic generation of test case and
execution of the tests provides significant advantages for
those who lack formal knowledge in unit testing. JUnit
allows users to code and also to test during the
development process. It provides a graphical user
interface(GUI) which makes it possible to write and test
the source code more quickly and efficiently.

Regarding complex and deep unit testing, users must use
different tools that render more features for text editing
and hence the errors can be eliminated. It is difficult to
understand the IDE errors that is generated for those who
lack technical knowledge and hence not suitable for
customer-driven testing.

REFERENCES

[1] Michael Ellims & James Bridges & Darrel C. "The

Economics of Unit Testing" Ince, Empir Software Eng
(2006) 11: 5-31, Springer Science + Business Media,
Inc. 2006

[2] ADempiere ERP, March 2011:
http://www.adempiere.com/ADempiere-ERP

[3] Dirk Riehle, "JUnit 3.8 Documented Using
Collaborations" ACM SIGSOFT Software Engineering
Notes Page 1, New York, NY, USA, March 2008 Volume
33

[4] Andy Hunt and Dave Thomas "Pragmatic Unit Testing
in Java with JUnit", 2004
http://www.pragmaticprogrammer.com/starter-kit

[5] "Eclipse IDE 4.15: The Eclipse IDE for Java Developers"
Eclipse, 2011 : https://www.eclipse.org/ide/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2392

http://junit.org/junit5/docs/current/api/org/junit/jupiter/api/Assumptions.html
https://www.eclipse.org/ide/

