
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4002

 A Predictive Model for Cancer Detection using CUDA K-Means

M. Vishnu Prasath1, T.Shankar2, M.Jagan3, V. Vijayaprasad4, S.Thanghavel5, Dr.A.Kunthavai6

1,2,3,4,5Student, Computer Science and Engineering, Coimbatore Institute of Technology (CIT), Coimbatore, Tamil
Nadu, India

6Associate Professor, Computer Science and Engineering, Coimbatore Institute of Technology (CIT), Coimbatore,
Tamil Nadu, India

---***---

Abstract - Cancer is the uncontrolled growth of abnormal
cell divisions in human body. Cancer develops when the body
has no control over cell division, thus creates enormous extra
cells. These extra cells may form a mass of tissue, called
a tumor. This abnormal growth of cells can be of two types
benign (Non-Cancerous) and malignant (Cancerous). A major
challenge in clinical cancer research is the prediction of
prognosis at the time of tumor discovery. Accurate prediction
of different tumor types can help in providing better treatment
and toxicity minimization on the patients. Analyzing the
abnormality leads to tremendous amount of data. Mining
these data using powerful data analysis tools is important to
obtain the biological knowledge needed to classify the cancer
types. Analyzing the biological data needs data analytical
system to classify the cancer cells without wet lab. Processing
of these multidimensional biological data in sequential form
will be time consuming and it will reduce the performance of
the analytical system. In order to overcome the disadvantages
of sequential processing, parallel processing is used. In this
project, parallelism is achieved by processing the data in cores
of GPU, because GPU contains several hundreds or thousands
of cores. Data will be processed in parallel using these cores
and hence increases the throughput of the analytical system.
In this way, cancer cells can be detected using parallel
processing with the use of CUDA (Compute Unified Device
Architecture). K-means clustering algorithm is proposed in
CUDA to classify the cell mutations into benign and malignant.

Key Words: Cancer, Benign, Malignant, GPU, Parallel
processing, Mutations, CUDA.

1. INTRODUCTION

 Data is tremendously growing in all life aspects resulting
in mountains of data. Mining these mountains using
powerful data analysis tools is important to obtain the
contained valuable information needed to present the
decision-making solutions. Biological data mining has
become an essential part of a new research field called
Bioinformatics. It emphasizes on the genomic and proteomic
data analysis. Genome is the complete set of genes of an
organism. DNA sequences form the foundation of the genetic
codes of all living organisms. All DNA sequences includes
basic building blocks called nucleotides. A gene usually
comprises hundreds of nucleotides arranged in a particular
order. One of the most important areas of medical research
is the identification of disease-causing genes, which can

improve the process of diagnosis and the treatment of
diseases. It is known that certain diseases, such as cancer,
are reflected in the change of the expression values of certain
genes which control how the cell functions. It is
characterized by the uncontrolled division of cells to spread,
either by direct growth into adjacent tissues through
invasion or by implantation into distant sites by metastasis.
This growth behavior of cells causes a lump (tumor) to form
rogue immune cells that invade and spreads through the
blood and lymph systems to other parts of the body.
Recently, cancer researchers have attempted to look at
cancer prognosis, which is a foreknowledge of an event
before its possible occurrence. There are three prognosis
foci, which are cancer susceptibility, cancer recurrence and
cancer survivability. The spectrum of cancer types exceeds
100 different tumors, named by the location where cancer
first developed or by the type of tissue cell in which they
start. However, a set of characteristics are shared among
almost all malignancies. Cancer classification of different
tumor types is of great importance in cancer diagnosis and
drug discovery. A major challenge in clinical cancer research
is the prediction of prognosis at the time of tumor discovery.
Accurate prediction of different tumor types can help in
providing better treatment and toxicity minimization on the
patients. The recent development of microarray technology
has motivated the simultaneous monitoring of genes and
cancer classification using gene expression data. Processing
of these kinds of biological data in sequential form will be
time consuming for large size of multidimensional vectors
and it will reduce the capacity of the system. So, it is better to
use parallel processing instead of serial processing. It is
always a better way to carrying out processing using parallel
threads. Parallelism is achieved by processing the data in
cores of GPU. Because GPU contains several hundreds or
thousands of cores. Data will be processed parallel using
those cores and therefore faster throughput can be achieved.
In this way, cancer cells can also be detected using parallel
processing by CUDA (Compute Unified Device Architecture).
To achieve this parallelism, parallel k-means clustering
algorithm is proposed in CUDA to classify the human cells
into cancer causing cluster and normal cluster.
The list of surveys carried out are,

 In the paper [1],” Parallelization of k-means++ using
CUDA”, k-means++ algorithm is used to find the initial seeds
in k-means algorithm. It is an upgraded version of k-means
algorithm. K-means++ is then parallelized using CUDA.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4003

 In “Accelerating k-means on the graphics processor via
CUDA”, [2] optimized k-means algorithm is implemented
using CUDA. The algorithm is realized in a hybrid manner,
parallelizing distance calculations on the GPU while
sequentially updating cluster centroids on the CPU based on
the results from the GPU calculations.

 The paper [3] “Speeding up k-means algorithm by GPUs”,
also implements k-means algorithm suitable for both low
and high dimensional datasets.

 In “GPGPU processing in CUDA architecture”, [4] makes
comparison of CUDA C/C++ with other parallel programming
languages like OpenCL and Direct Compute. It also lists out
the common myths about CUDA and how the future seems to
be promising for CUDA.

The objective of the project is,

 To minimize the time taken for serial processing with
large data by implementing parallel processing strategy to
achieve data parallelization by executing the algorithms in
GPUs with the help of CUDA, because GPU processing
minimizes the overhead of CPU and it also supports high
complex computations.

3. METHODOLOGY

 Cancer is a serious and life-threatening disease.
Detection of cancer at early stages is a challenging task. A
model for detecting the cancer using parallel processing has
been proposed. K-means clustering algorithm is proposed in
CUDA to classify the human cells into benign and malignant
using GPU cores. The modules of the project are listed and
the system architecture is shown in Fig -1.

Initially, cancer dataset is collected from COSMIC
database. It contains string data. In pre-processing stage,
WEKA tool is used to convert string data to nominal data and
open cravat tool is used to extract more detailed information
from the existing database as shown in Fig -2. Then k-means
clustering algorithm is proposed using CUDA to classify the
human cells into benign and malignant. Pillar k-means is the
optimized k-means algorithm that optimizes initial centroid
selection. Attribute selection property is used to classify
clusters based on important attributes. Model evaluation
includes computing the accuracy before attribute selection
and after attribute selection in both serial and parallel
processing.

 COSMIC DATA REPOSITORY

OPEN CRAVAT TOOL WEKA TOOL

 Fig -1: System Architecture

3.1 Data Acquisition and Pre-processing

 Cancer dataset is collected from COSMIC (Catalogue of
Somatic Mutations) database. It is an online database of
somatically acquired mutations found in human cancer.
 Somatic mutations are those that occur in non-germ
line cells that are not inherited by children [5]. In pre-
processing stage, missing values and noise values are
handled in the dataset. Cancer data consists of protein
sequences such as A or C or T or G, position of cell mutation,
strand, HUGO symbol etc. Dataset containing attributes such
as chromosomes, position, strand, HUGO symbol are
available in string format. It is converted to nominal form
(binary format) by using WEKA (Waikato Environment for
Knowledge Analysis) tool. By using open cravat tool, more
detailed information is extracted from existing dataset.

 MODEL EVALUATION

 DATA ACQUISITION

 DATA PRE-PROCESSING

PARALLEL K-

MEANS

PILLAR
K-MEANS

CUDA K-

MEANS

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4004

Fig -2: Open Cravat Tool [6]

Fig -3 shows the flowchart of WEKA tool.

Fig -3: WEKA Flowchart [7]

3.2 Variance Thresholding

 Variance thresholding is used for filtering out the
required attributes alone from the entire list of attributes
available. It is a Feature selector that removes all low-
variance features. This feature selection algorithm looks only
at the features (X), not the desired outputs (y), and can thus
be used for unsupervised learning. Features with a training-
set variance lower than this threshold will be removed [8].
Here, the threshold value is set as 0.5.

 Hence all the attributes having a variance value less
than 0.5 will be eliminated and the remaining attributes
alone are returned. It is implemented in python. The
Variance thresholding program takes the initial dataset as
input and returns a dataset with the attributes having
greater variance value alone. Here in initial dataset there are
98 columns and after the variance thresholding, the new
dataset has 28 columns.

 When both the datasets are executed and the results are
compared, both yields the same accuracy. But the time taken
is less in the later dataset than the former.

3.3 Parallel k-means for cancer detection

 Parallel processing is a mode of operation in which a
process is split into parts, which are executed
simultaneously on different processors attached to the same
computer. It is done by using “Divide and conquer”
principle. Process is split into threads and it will be
executing in cores of GPU (Graphics Processing Unit)
through CUDA (Compute Unified Device Architecture).

3.3.1 K-means clustering

 K-means is a clustering algorithm used to classify cancer
cells into driver and passenger cells. K-means is parallelized
by using Compute Unified Device Architecture (CUDA). It is
one of the most popular "clustering" algorithms. It is an
unsupervised learning algorithm. K-means clustering is a
method of vector quantization, originally from signal
processing, that is popular for cluster analysis in data
mining. K-means clustering aims to partition n observations
into K clusters in which each observation belongs to
the cluster with the nearest mean, serving as a prototype of
the cluster. This results in a partitioning of the data space
into Voronoi cells. K-Means minimizes within-cluster
variances (squared Euclidean distances), but not regular
Euclidean distances, which would be the more
difficult Weber problem: the mean optimizes squared errors,
whereas only the geometric median minimizes Euclidean
distances. Better Euclidean solutions can be found using k-
medians and k-medoids. The problem is computationally
difficult NP-hard; however, efficient heuristic
algorithms converge quickly to a local optimum [9]. In order
to prevent the algorithm from reaching local optimum, Pillar
K-means algorithm is used for initial seed selection.

3.3.2 Pillar k-means

The advanced development of electronic data has brought
two main impacts in data clustering algorithm, including
how to store big data and how to process this type of data
[10]. Pillar K-means cluster is one of clustering algorithm
developed from K-means algorithm which is more effective
than another similar algorithm. It is used for initial seed
selection. It selects optimized initial centroid. These are
usually similar to the expectation-maximization
algorithm for mixtures of Gaussian distributions via an
iterative refinement approach employed by both k-
means and Gaussian mixture modelling. They both use
cluster centers to model the data; however, k-means
clustering tends to find clusters of comparable spatial extent,
while the expectation-maximization mechanism allows
clusters to have different shapes. The algorithm has a loose
relationship to the k-nearest neighbor classifier, a
popular machine learning technique for classification that is
often confused with k-means due to the name. Applying the
1-nearest neighbor classifier to the cluster centers obtained
by k-means classifies new data into the existing clusters. This
is known as nearest centroid classifier or Rocchio algorithm
[11]. The formula for calculating Euclidean distance d(x,y) is
mentioned below:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4005

Where d(x,y) is the euclidean distance between x and y rows.

3.3.3 Steps to calculate k-means clustering

 Let X = {x1,x2,x3,……..,xn} be the set of data points
and V = {v1,v2,…….,vc} be the set of centers.

 Randomly select ‘c’ cluster centres

As a starting point, model should decide how many clusters it
should make. First the model picks up K, (let K = 3) data
points from the dataset. These data points are called cluster
centroids. Now there are different ways you to initialize the
centroids, you can either choose them at random — or sort
the dataset, split it into K portions and pick one data point
from each portion as a centroid.

 Calculate the distance between each data point and

cluster centres

The model performs calculations on it’s own and assigns a
cluster to each data point. The model would calculate the
distance between the data point.

 Assign the data point to the cluster centre whose
distance from the cluster centre is minimum of all
the cluster centres

The data point will be assigned to the cluster with the nearest
centroid.

 Recalculate the new cluster centre using

 Where, ‘ci’ represents the number of data points
in ith cluster.

‘xi’ represents the data points in ith cluster.

‘vi’ is the new centroid data point.

 Recalculate the distance between each data point and
new obtained cluster centres

 If no data point was reassigned then stop, otherwise

repeat the process [12].

3.3.4 CUDA

 NVIDIA provides a programming interface known as
CUDA (Compute Unified Device Architecture) which allows
direct programming of the NVIDIA hardware. Using NVIDIA
devices to execute massively parallel algorithms will yield a
many times speedup over sequential implementations on
conventional CPUs [13]. It is a parallel computing platform
and application programming interface (API) model. It
allows software developers and software engineers to use a
CUDA-enabled graphics processing unit (GPU) for general
purpose processing – an approach termed GPGPU (General-
Purpose computing on Graphics Processing Units) [14].

 In contrast to CPU computer, one GPU contains several
hundreds or even thousands of cores as shown in figure 4. It
uses high-bandwidth bus (∼200Gb/s) connecting the
memory on chip to the computing cores and is optimized for
parallel calculations, particularly for single instruction
multiple data (SIMD) operations. The Fig-4 shows the
comparison between CPU cores and GPU cores.

Fig -4: CPU cores VS GPU cores [13][14]

 The CUDA platform is a software layer that gives direct
access to the GPU's virtual instruction set and parallel
computational elements, for the execution of compute
kernels. The CUDA platform is designed to work with
programming languages such as C, C++, and Fortran. This
accessibility makes it easier for specialists in parallel
programming to use GPU resources, in contrast to prior APIs
like Direct3D and OpenGL, which required advanced skills in
graphics programming.

 The CUDA platform is accessible to software developers
through CUDA-accelerated libraries, compiler directives
such as OpenACC, and extensions to industry-standard
programming languages including C, C++ and Fortran. C/C++
programmers can use 'CUDA C/C++'. Fortran programmers
can use 'CUDA Fortran' [14]. The processing flow of CUDA is
shown in Fig -5.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4006

Fig -5: Processing flow of CUDA

Process Flow includes,

 Copy data from main memory to GPU memory.

 CPU initiates the GPU compute kernels.

 GPU’s CUDA cores execute the kernel in parallel.

 Copy the resulting data from GPU memory to main
memory [14].

 In the CUDA processing paradigm (as well as other
paradigms similar to stream processing) there is a notion of
a ‘kernel’. A kernel is essentially a mini-program or
subroutine. Kernels are the parallel programs to be run on
the device (the NVIDIA graphics card inside the host system).
A number of primitive ‘threads’ will simultaneously execute
a kernel program. Batches of these primitive threads are
organized into ‘thread blocks’. A thread block contains a
specific number of primitive threads, chosen based on the
amount of available shared memory, as well as the memory
access latency hiding characteristics desired. The number of
threads in a thread block is also limited by the architecture
to a total of 512 threads per block. Each thread within a
thread block can communicate efficiently using the shared
memory scoped to each thread block. Using this shared
memory, all threads can also sync within a thread block.
Every thread within a thread block has its own thread ID.
Thread blocks are conceptually organized into 1D, 2D or 3D
arrays of threads for convenience.

 As shown in Fig -6, a ‘grid’ is a collection of thread blocks
of the same thread dimensionality which all execute the
same kernel. Grids are useful for computing a large number
of threads in parallel since thread blocks are physically
limited to only 512 threads per block. However, thread
blocks within a grid may not communicate via shared
memory, and consequently may not synchronize with one
another.

 Threads are grouped into blocks.
 Blocks are grouped into a grid.
 A kernel is executed as a grid of blocks of threads.

Fig -6: Thread Hierarchy

 The above diagram demonstrates the thread hierarchy
described. Here, a given kernel contains a 3x2 grid of thread
blocks. Each thread block is a 4x3 block of threads, yielding a
total of 72 threads executing said kernel [15].

 The interface between the host system and
the CUDA device(s) is the cuda_value function. It is
responsible for allocating memory on the device for the
weights, the data, and intermediate results (i.e., the
probabilities and the gradient). Host memory is much larger
than the device memory, so we must partition the training
data into smaller slices (several columns of X), transferring
each to the device and calculating their contributions to the
objective function value and gradient one slice at a time. All
four steps (energy through gradient calculation) must be
completed on the device for the given slice of instances
before the next slice is processed.

 The value and gradient are sums over the N instances,
this is a straightforward process of adding results to
accumulator variables. The partial sum for the objective
function value is calculated on the device and then
accumulated on the host. The partial sums for the gradient
matrix are accumulated on the CUDA device and copied back
to the host when all the data has been processed. This is
because the gradient is calculated using the CUBLAS library,
which makes it easy to accumulate matrix products in
parallel [16].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4007

4. PSEUDO CODE

Parallel K-Means (P,K)

Input: a dataset of points P = {P1,…,Pn},a number of
Clusters k
Output: centers {c1,…ck} Implicitly dividing P into
 k clusters
Choose k intial centers C = {c1,…,ck} using pillar K-means
Pillar k-means:
First seed
do
for i=1,……,N calculate the sum of all data points
Find the Grand mean (m) of P using the sum
for i=1,…….,N calculate the distance (di) between m and i
Select the point (c1) corresponding to max (di) as
First seed
//end do
Second seed
do
for i=1,……,N Calculate the distance(d1i)between c1 and i
Select the point (c2) corresponding to max (d1i) as
Second seed.
//end do
While convergence has not been met
do -> assignment step:
for i=1,…..,N do
find closest ck belongs to C to instance Pi
assign instance Pi to set ck
update step:
for i=1,....,k do
set Ci to be the center of mean of all points in Ci
//end

5. EXPERIMENTAL RESULTS

 The detection of cancer cell has been achieved through
parallel processing with the help of CUDA (Compute Unified
Device Architecture) using k-means clustering algorithm.
Implementation is done with Windows operating system 32
or 64 bit processor, Visual Studio 2017, NVIDIA CUDA
platform, C programming language.

 The mutation data for the cancer detection is obtained
from the cosmic database. The obtained data is then pre-
processed using WEKA and Open CRAVAT tool. The required
attributes for the classification are selected using Variance
thresholding. The pre-processed data is then classified using
CUDA K-means Clustering. The cluster obtained is compared
with the attributes of the previously obtained cancer dataset
and cluster is classified as benign (cancerous) or malignant
(non-cancerous).

The raw data and the pre-processed data are shown in
Fig-7 and Fig-8.

Fig -7: Dataset before pre-processing

Fig -8: Dataset after pre-processing

Resultant clusters obtained using parallel K-Means before
and after feature selection are shown in Fig -9 and Fig -10.

 Fig -9: Parallel k-means before feature selection

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4008

 Fig -10: Parallel k-means after feature selection

 Thus, the time taken for running parallel k-means
clustering algorithm before featured selection is greater than
running k-means clustering algorithm after featured
selection.

Resultant clusters obtained using serial k-Means before
and after feature selection are shown in Fig -11 and Fig-
12.

 Fig -11: K-means before feature selection

 Fig -12: K-means after feature selection

 Thus, the time taken for running k-means clustering
algorithm before featured selection is greater than running
k-means clustering algorithm after featured selection.

 Hence, in both CUDA and C, feature selection helps to
minimize the runtime of the algorithm.

The time comparison between Serial Processing VS
Parallel Processing is shown Fig -13

15.515 14.495

1.025 0.649

0

5

10

15

20

Before
Feature

selection

After
Feature

Selection

Ti
m

e
 in

 s
e

co
n

d
s

Serial processing Parallel processing

Fig -13: Serial processing VS parallel processing

 From the above graph it is incurred that the time
consumed by CUDA K-means before feature selection takes
6.6% of time taken by serial implementation and after
feature selection 4.5% of time when compared to that of
serial processing.

6. CONCLUSIONS AND FUTURE WORK

 In this paper, it is shown how to parallelize an algorithm
(K-means algorithm) used by many applications on a highly
parallel graphics processing architecture. Our results suggest
that computing an algorithm in parallel environment (CUDA)
takes lesser time than other strategies like serial processing
and it also minimizes the overhead of CPUs.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4009

 Detecting the cancer at early stage is crucial and
essential task now-a-days for medical diagnosis. Data mining
techniques provides facility to design and develop a
predictive model for identifying cancer cells. This paper
shows the implementation of these techniques in parallel
programming approach that helps in improving the
efficiency of the predictive model.

 Future work includes classifying the driver mutations as
curable and non-curable.

REFERENCES

[1] Maliheh Heydarpour Shahrezaei, Reza Tavoli, (2019),

”Parallelization of Kmeans++ using CUDA”,
arXiv:1908.02136v1[cs.DC],
(https://arxiv.org/pdf/1908.02136)

[2] Mario Zechner, Michael Granitzer, (2009),
“Accelerating k-means on the graphics processor via
CUDA”, In proceedings of IEEE (Vol.1, pp. 7-15)
(https://www.computer.org/csdl/proceedings-
article/intensive/2009/3585a007/12OmNwlqhS9)

[3] You Li, Kaiyong Zhao, Xiaowen Chu, Jiming Liu, (2013),
”Speeding up k-means algorithm by
GPUs.”,(Vol.79,issue.2,pp.216-229)
(https://www.sciencedirect.com/science/article/pii/S0
022000012000992)

[4] Jayshree Ghorpade, Jitendra Parande, Madhura
Kulkarni, Amit Bawaskar, (2012), “GPGPU Processing
in CUDA architecture”, (ACIJ,Vol.3,No.1)
(http://www.airccse.org/journal/acij/papers/0112acij
09)

[5] Wikipedia for COSMIC database information
(https://en.wikipedia.org/wiki/COSMIC_cancer_databas
e)

[6] Biostars for open cravat tool informations
(https://www.biostars.org/p/354542/)

[7] Tutorialspoint for WEKA tool informations
(https://www.tutorialspoint.com/weka/weka_quick_gu
ide)

[8] Scikit-learn for variance threshold informations
(https://www.tutorialspoint.com/weka/weka_quick_gu
ide)

[9] Wikipedia for k-means clustering informations
(https://en.wikipedia.org/wiki/K-means_clustering)

[10] A.L.Ramdani and H.B.Firmansyah “Pillar K-Means
Clustering Algorithm Using MapReduce Framework”.,
IO012031P Conf .Series: Earth and Environmental
Science 258 (2019), doi:10.1088/1755-
1315/258/1/012031

[11] Medium for details about Pillar k-means algorithm
(https://medium.com/@sourodipkundu8/kmeans-for-
beginner-4af96166379e)

[12] Towards data science for details about k-means
clustering
(https://towardsdatascience.com/unsupervised-
learning-and-data-clustering-eeecb78b422a)

[13] Game scanning for details about CUDA cores
(https://www.gamingscan.com/what-are-nvidia-cuda-
cores/)

[14] Wikipedia for CUDA processing flow information
(https://en.wikipedia.org/wiki/CUDA)

[15] CUDA.ce.rit.edu for overall CUDA information about
thread hierarchy
(http://cuda.ce.rit.edu/cuda_overview/cuda_overview)

[16] Science direct for CUDA value information

(http://cuda.ce.rit.edu/cuda_overview/cuda_overv
iew)

BIOGRAPHIES

M. Vishnu Prasath1, pursuing final
year Bachelor’s degree (B.E) in
Computer Science and
Engineering, Coimbatore Institute
of Technology, Coimbatore, Tamil
Nadu

T.Shankar2, pursuing final year
Bachelor’s degree in Computer
Science and Engineering,
Coimbatore Institute of
Technology, Coimbatore, Tamil
Nadu.

M.Jagan3, pursuing final year
Bachelor’s degree (B.E) in
Computer Science and Engineering
,Coimbatore Institute of
Technology, Coimbatore, Tamil
Nadu.

V.Vijayaprasad4, pursuing final
year Bachelor’s degree (B.E) in
Computer Science and
Engineering, Coimbatore Institute
of Technology, Coimbatore, Tamil
Nadu.

S.Thanghavel5, pursuing final year
Bachelor’s degree (B.E) in
Computer Science and
Engineering, Coimbatore Institute
of Technology, Coimbatore, Tamil
Nadu.

https://arxiv.org/pdf/1908.02136
https://www.computer.org/csdl/proceedings-article/intensive/2009/3585a007/12OmNwlqhS9
https://www.computer.org/csdl/proceedings-article/intensive/2009/3585a007/12OmNwlqhS9
https://www.sciencedirect.com/science/article/pii/S0022000012000992
https://www.sciencedirect.com/science/article/pii/S0022000012000992
http://www.airccse.org/journal/acij/papers/0112acij09
http://www.airccse.org/journal/acij/papers/0112acij09
https://en.wikipedia.org/wiki/COSMIC_cancer_database
https://en.wikipedia.org/wiki/COSMIC_cancer_database
https://www.biostars.org/p/354542/
https://www.tutorialspoint.com/weka/weka_quick_guide
https://www.tutorialspoint.com/weka/weka_quick_guide
https://www.tutorialspoint.com/weka/weka_quick_guide
https://www.tutorialspoint.com/weka/weka_quick_guide
https://en.wikipedia.org/wiki/K-means_clustering
https://medium.com/@sourodipkundu8/kmeans-for-beginner-4af96166379e
https://medium.com/@sourodipkundu8/kmeans-for-beginner-4af96166379e
https://towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a
https://towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a
https://www.gamingscan.com/what-are-nvidia-cuda-cores/
https://www.gamingscan.com/what-are-nvidia-cuda-cores/
https://en.wikipedia.org/wiki/CUDA
http://cuda.ce.rit.edu/cuda_overview/cuda_overview
http://cuda.ce.rit.edu/cuda_overview/cuda_overview
http://cuda.ce.rit.edu/cuda_overview/cuda_overview

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4010

Dr.A.Kunthavai6 received BE
degree in Computer Science and
Engineering from Madurai
Kamarajar University, MS degree
(by research) in 2008 and
PhD degree in 2014 from Anna
University, India. Currently, she is
working as an Associate Professor
in computer science and
engineering at Coimbatore
Institute of Technology, India. She
is a life member of
ISTE. Her research interest
includes bioinformatics, medical
imaging, distributed system and
data mining.

