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Abstract - Cancer is the uncontrolled growth of abnormal 
cell divisions in human body. Cancer develops when the body 
has no control over cell division, thus creates enormous extra 
cells. These extra cells may form a mass of tissue, called 
a tumor. This abnormal growth of cells can be of two types 
benign (Non-Cancerous) and malignant (Cancerous). A major 
challenge in clinical cancer research is the prediction of 
prognosis at the time of tumor discovery. Accurate prediction 
of different tumor types can help in providing better treatment 
and toxicity minimization on the patients. Analyzing the 
abnormality leads to tremendous amount of data. Mining 
these data using powerful data analysis tools is important to 
obtain the biological knowledge needed to classify the cancer 
types. Analyzing the biological data needs data analytical 
system to classify the cancer cells without wet lab. Processing 
of these multidimensional biological data in sequential form 
will be time consuming and it will reduce the performance of 
the analytical system. In order to overcome the disadvantages 
of sequential processing, parallel processing is used. In this 
project, parallelism is achieved by processing the data in cores 
of GPU, because GPU contains several hundreds or thousands 
of cores. Data will be processed in parallel using these cores 
and hence increases the throughput of the analytical system. 
In this way, cancer cells can be detected using parallel 
processing with the use of CUDA (Compute Unified Device 
Architecture). K-means clustering algorithm is proposed in 
CUDA to classify the cell mutations into benign and malignant.  
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1. INTRODUCTION 
 
        Data is tremendously growing in all life aspects resulting 
in mountains of data. Mining these mountains using 
powerful data analysis tools is important to obtain the 
contained valuable information needed to present the 
decision-making solutions. Biological data mining has 
become an essential part of a new research field called 
Bioinformatics. It emphasizes on the genomic and proteomic 
data analysis. Genome is the complete set of genes of an 
organism. DNA sequences form the foundation of the genetic 
codes of all living organisms. All DNA sequences includes 
basic building blocks called nucleotides. A gene usually 
comprises hundreds of nucleotides arranged in a particular 
order. One of the most important areas of medical research 
is the identification of disease-causing genes, which can 

improve the process of diagnosis and the treatment of 
diseases. It is known that certain diseases, such as cancer, 
are reflected in the change of the expression values of certain 
genes which control how the cell functions. It is 
characterized by the uncontrolled division of cells to spread, 
either by direct growth into adjacent tissues through 
invasion or by implantation into distant sites by metastasis.  
This growth behavior of cells causes a lump (tumor) to form 
rogue immune cells that invade and spreads through the 
blood and lymph systems to other parts of the body. 
Recently, cancer researchers have attempted to look at 
cancer prognosis, which is a foreknowledge of an event 
before its possible occurrence. There are three prognosis 
foci, which are cancer susceptibility, cancer recurrence and 
cancer survivability. The spectrum of cancer types exceeds 
100 different tumors, named by the location where cancer 
first developed or by the type of tissue cell in which they 
start. However, a set of characteristics are shared among 
almost all malignancies. Cancer classification of different 
tumor types is of great importance in cancer diagnosis and 
drug discovery. A major challenge in clinical cancer research 
is the prediction of prognosis at the time of tumor discovery. 
Accurate prediction of different tumor types can help in 
providing better treatment and toxicity minimization on the 
patients. The recent development of microarray technology 
has motivated the simultaneous monitoring of genes and 
cancer classification using gene expression data. Processing 
of these kinds of biological data in sequential form will be 
time consuming for large size of multidimensional vectors 
and it will reduce the capacity of the system. So, it is better to 
use parallel processing instead of serial processing. It is 
always a better way to carrying out processing using parallel 
threads. Parallelism is achieved by processing the data in 
cores of GPU. Because GPU contains several hundreds or 
thousands of cores. Data will be processed parallel using 
those cores and therefore faster throughput can be achieved. 
In this way, cancer cells can also be detected using parallel 
processing by CUDA (Compute Unified Device Architecture). 
To achieve this parallelism, parallel k-means clustering 
algorithm is proposed in CUDA to classify the human cells 
into cancer causing cluster and normal cluster. 
The list of surveys carried out are, 
 
        In the paper [1],” Parallelization of k-means++ using 
CUDA”, k-means++ algorithm is used to find the initial seeds 
in k-means algorithm. It is an upgraded version of k-means 
algorithm. K-means++ is then parallelized using CUDA. 
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         In “Accelerating k-means on the graphics processor via 
CUDA”, [2] optimized k-means algorithm is implemented 
using CUDA. The algorithm is realized in a hybrid manner, 
parallelizing distance calculations on the GPU while 
sequentially updating cluster centroids on the CPU based on 
the results from the GPU calculations.  
 
        The paper [3] “Speeding up k-means algorithm by GPUs”, 
also implements k-means algorithm suitable for both low 
and high dimensional datasets.     
 
      In “GPGPU processing in CUDA architecture”, [4] makes 
comparison of CUDA C/C++ with other parallel programming 
languages like OpenCL and Direct Compute. It also lists out 
the common myths about CUDA and how the future seems to 
be promising for CUDA.  
 
The objective of the project is, 
 
        To minimize the time taken for serial processing with 
large data by implementing parallel processing strategy to 
achieve data parallelization by executing the algorithms in 
GPUs with the help of CUDA, because GPU processing 
minimizes the overhead of CPU and it also supports high 
complex computations.  
 

3. METHODOLOGY 
 
        Cancer is a serious and life-threatening disease. 
Detection of cancer at early stages is a challenging task. A 
model for detecting the cancer using parallel processing has 
been proposed. K-means clustering algorithm is proposed in 
CUDA to classify the human cells into benign and malignant 
using GPU cores.  The modules of the project are listed and 
the system architecture is shown in Fig -1. 

Initially, cancer dataset is collected from COSMIC 
database. It contains string data. In pre-processing stage, 
WEKA tool is used to convert string data to nominal data and 
open cravat tool is used to extract more detailed information 
from the existing database as shown in Fig -2. Then k-means 
clustering algorithm is proposed using CUDA to classify the 
human cells into benign and malignant. Pillar k-means is the 
optimized k-means algorithm that optimizes initial centroid 
selection. Attribute selection property is used to classify 
clusters based on important attributes. Model evaluation 
includes computing the accuracy before attribute selection 
and after attribute selection in both serial and parallel 
processing.    
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      Fig -1: System Architecture 
 

 

3.1 Data Acquisition and Pre-processing   
 

        Cancer dataset is collected from COSMIC (Catalogue of 
Somatic Mutations) database. It is an online database of 
somatically acquired mutations found in human cancer. 
 Somatic mutations are those that occur in non-germ 
line cells that are not inherited by children [5]. In pre-
processing stage, missing values and noise values are 
handled in the dataset. Cancer data consists of protein 
sequences such as A or C or T or G, position of cell mutation, 
strand, HUGO symbol etc. Dataset containing attributes such 
as chromosomes, position, strand, HUGO symbol are 
available in string format. It is converted to nominal form 
(binary format) by using WEKA (Waikato Environment for 
Knowledge Analysis) tool. By using open cravat tool, more 
detailed information is extracted from existing dataset. 
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Fig -2: Open Cravat Tool [6] 

 
Fig -3 shows the flowchart of WEKA tool. 

 

Fig -3: WEKA Flowchart [7] 

3.2 Variance Thresholding 

        Variance thresholding is used for filtering out the 
required attributes alone from the entire list of attributes 
available. It is a Feature selector that removes all low-
variance features. This feature selection algorithm looks only 
at the features (X), not the desired outputs (y), and can thus 
be used for unsupervised learning. Features with a training-
set variance lower than this threshold will be removed [8]. 
Here, the threshold value is set as 0.5. 

        Hence all the attributes having a variance value        less 
than 0.5 will be eliminated and the remaining attributes 
alone are returned. It is implemented in python. The 
Variance thresholding program takes the initial dataset as 
input and returns a dataset with the attributes having 
greater variance value alone. Here in initial dataset there are 
98 columns and after the variance thresholding, the new 
dataset has 28 columns. 
 
        When both the datasets are executed and the results are 
compared, both yields the same accuracy. But the time taken 
is less in the later dataset than the former. 
 

3.3 Parallel k-means for cancer detection 

        Parallel processing is a mode of operation in which a 
process is split into parts, which are executed 
simultaneously on different processors attached to the same 
computer. It is done by using “Divide and conquer” 
principle. Process is split into threads and it will be 
executing in cores of GPU (Graphics Processing Unit) 
through CUDA (Compute Unified Device Architecture). 

3.3.1 K-means clustering 

        K-means is a clustering algorithm used to classify cancer 
cells into driver and passenger cells. K-means is parallelized 
by using Compute Unified Device Architecture (CUDA). It is 
one of the most popular "clustering" algorithms. It is an 
unsupervised learning algorithm.  K-means clustering is a 
method of vector quantization, originally from signal 
processing, that is popular for cluster analysis in data 
mining. K-means clustering aims to partition n observations 
into K clusters in which each observation belongs to 
the cluster with the nearest mean, serving as a prototype of 
the cluster. This results in a partitioning of the data space 
into Voronoi cells. K-Means minimizes within-cluster 
variances (squared Euclidean distances), but not regular 
Euclidean distances, which would be the more 
difficult Weber problem: the mean optimizes squared errors, 
whereas only the geometric median minimizes Euclidean 
distances. Better Euclidean solutions can be found using k-
medians and k-medoids. The problem is computationally 
difficult NP-hard; however, efficient heuristic 
algorithms converge quickly to a local optimum [9]. In order 
to prevent the algorithm from reaching local optimum, Pillar 
K-means algorithm is used for initial seed selection. 

3.3.2 Pillar k-means 

The advanced development of electronic data has brought 
two main impacts in data clustering algorithm, including 
how to store big data and how to process this type of data 
[10]. Pillar K-means cluster is one of clustering algorithm 
developed from K-means algorithm which is more effective 
than another similar algorithm. It is used for initial seed 
selection. It selects optimized initial centroid.   These are 
usually similar to the expectation-maximization 
algorithm for mixtures of Gaussian distributions via an 
iterative refinement approach employed by both k-
means and Gaussian mixture modelling. They both use 
cluster centers to model the data; however, k-means 
clustering tends to find clusters of comparable spatial extent, 
while the expectation-maximization mechanism allows 
clusters to have different shapes. The algorithm has a loose 
relationship to the k-nearest neighbor classifier, a 
popular machine learning technique for classification that is 
often confused with k-means due to the name. Applying the 
1-nearest neighbor classifier to the cluster centers obtained 
by k-means classifies new data into the existing clusters. This 
is known as nearest centroid classifier or Rocchio algorithm 
[11]. The formula for calculating Euclidean distance d(x,y) is 
mentioned below:    
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Where d(x,y) is the euclidean distance between x and y rows. 

3.3.3 Steps to calculate k-means clustering 

         Let  X = {x1,x2,x3,……..,xn} be the set of      data points       
and V = {v1,v2,…….,vc} be the set of centers. 

 Randomly select ‘c’ cluster centres 
 
As a starting point, model should decide how many clusters it 
should make. First the model picks up K, (let K = 3) data 
points from the dataset. These data points are called cluster 
centroids. Now there are different ways you to initialize the 
centroids, you can either choose them at random — or sort 
the dataset, split it into K portions and pick one data point 
from each portion as a centroid. 
 
 Calculate the distance between each data point and 

cluster centres 

The model performs calculations on it’s own and assigns a 
cluster to each data point. The model would calculate the 
distance between the data point. 

 Assign the data point to the cluster centre whose 
distance from the cluster centre is minimum of all 
the cluster centres 

The data point will be assigned to the cluster with the nearest 
centroid. 

 Recalculate the new cluster centre using 
 

 

 Where, ‘ci’ represents the number of data points  
in ith cluster. 

‘xi’ represents the data points in ith cluster. 

‘vi’ is the new centroid data point. 

 Recalculate the distance between each data point and 
new obtained cluster centres 

 
 If no data point was reassigned then stop, otherwise 

repeat the process [12]. 
 

 

3.3.4 CUDA 

        NVIDIA provides a programming interface known as 
CUDA (Compute Unified Device Architecture) which allows 
direct programming of the NVIDIA hardware. Using NVIDIA 
devices to execute massively parallel algorithms will yield a 
many times speedup over sequential implementations on 
conventional CPUs [13]. It is a parallel computing platform 
and application programming interface (API) model. It 
allows software developers and software engineers to use a 
CUDA-enabled graphics processing unit (GPU) for general 
purpose processing – an approach termed GPGPU (General-
Purpose computing on Graphics Processing Units) [14]. 

        In contrast to CPU computer, one GPU contains several 
hundreds or even thousands of cores as shown in figure 4. It 
uses high-bandwidth bus (∼200Gb/s) connecting the 
memory on chip to the computing cores and is optimized for 
parallel calculations, particularly for single instruction 
multiple data (SIMD) operations. The Fig-4 shows the 
comparison between CPU cores and GPU cores. 

 

Fig -4: CPU cores VS GPU cores [13][14] 

        The CUDA platform is a software layer that gives direct 
access to the GPU's virtual instruction set and parallel 
computational elements, for the execution of compute 
kernels. The CUDA platform is designed to work with 
programming languages such as C, C++, and Fortran.  This 
accessibility makes it easier for specialists in parallel 
programming to use GPU resources, in contrast to prior APIs 
like Direct3D and OpenGL, which required advanced skills in 
graphics programming. 

        The CUDA platform is accessible to software developers 
through CUDA-accelerated libraries, compiler directives  
such as OpenACC, and extensions to industry-standard 
programming languages including C, C++ and Fortran. C/C++ 
programmers can use 'CUDA C/C++'. Fortran programmers 
can use 'CUDA Fortran' [14]. The processing flow of CUDA is 
shown in Fig -5. 
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Fig -5: Processing flow of CUDA 

Process Flow includes, 

 Copy data from main memory to GPU memory. 

 CPU initiates the GPU compute kernels. 

 GPU’s CUDA cores execute the kernel in parallel. 

 Copy the resulting data from GPU memory to main 
memory [14]. 

        In the CUDA processing paradigm (as well as other 
paradigms similar to stream processing) there is a notion of 
a ‘kernel’. A kernel is essentially a mini-program or 
subroutine. Kernels are the parallel programs to be run on 
the device (the NVIDIA graphics card inside the host system). 
A number of primitive ‘threads’ will simultaneously execute 
a kernel program. Batches of these primitive threads are 
organized into ‘thread blocks’. A thread block contains a 
specific number of primitive threads, chosen based on the 
amount of available shared memory, as well as the memory 
access latency hiding characteristics desired. The number of 
threads in a thread block is also limited by the architecture 
to a total of 512 threads per block. Each thread within a 
thread block can communicate efficiently using the shared 
memory scoped to each thread block. Using this shared 
memory, all threads can also sync within a thread block. 
Every thread within a thread block has its own thread ID. 
Thread blocks are conceptually organized into 1D, 2D or 3D 
arrays of threads for convenience. 

      As shown in Fig -6, a ‘grid’ is a collection of thread blocks 
of the same thread dimensionality which all execute the 
same kernel. Grids are useful for computing a large number 
of threads in parallel since thread blocks are physically 
limited to only 512 threads per block. However, thread 
blocks within a grid may not communicate via shared 
memory, and consequently may not synchronize with one 
another. 

 

 Threads are grouped into blocks. 
 Blocks are grouped into a grid. 
 A kernel is executed as a grid of blocks of threads. 

 

 
Fig -6: Thread Hierarchy 

        The above diagram demonstrates the thread hierarchy 
described. Here, a given kernel contains a 3x2 grid of thread 
blocks. Each thread block is a 4x3 block of threads, yielding a 
total of 72 threads executing said kernel [15]. 

         The interface between the host system and 
the CUDA device(s) is the cuda_value function. It is 
responsible for allocating memory on the device for the 
weights, the data, and intermediate results (i.e., the 
probabilities and the gradient). Host memory is much larger 
than the device memory, so we must partition the training 
data into smaller slices (several columns of X), transferring 
each to the device and calculating their contributions to the 
objective function value and gradient one slice at a time. All 
four steps (energy through gradient calculation) must be 
completed on the device for the given slice of instances 
before the next slice is processed.  

        The value and gradient are sums over the N instances, 
this is a straightforward process of adding results to 
accumulator variables. The partial sum for the objective 
function value is calculated on the device and then 
accumulated on the host. The partial sums for the gradient 
matrix are accumulated on the CUDA device and copied back 
to the host when all the data has been processed. This is 
because the gradient is calculated using the CUBLAS library, 
which makes it easy to accumulate matrix products in 
parallel [16]. 
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4. PSEUDO CODE 

Parallel K-Means (P,K) 

Input:  a dataset of points P = {P1,…,Pn},a number of  
Clusters k  
Output:  centers {c1,…ck} Implicitly dividing P into 
 k clusters 
Choose k intial centers C = {c1,…,ck} using pillar K-means 
Pillar k-means: 
First seed 
do 
for i=1,……,N calculate the sum of all data points 
Find the Grand mean (m) of P using the sum 
for i=1,…….,N calculate the distance (di) between m and i 
Select the point (c1) corresponding to max (di) as  
First seed 
//end do  
Second seed 
do 
for i=1,……,N Calculate the distance(d1i)between c1 and i 
Select the point (c2) corresponding to max (d1i) as  
Second seed. 
//end do 
While convergence has not been met 
do -> assignment step: 
for i=1,…..,N do  
find closest ck belongs to C to instance Pi 
assign instance Pi to set ck 
update step: 
for i=1,....,k do 
set Ci to be the center of mean of all points in Ci 
//end 

5. EXPERIMENTAL RESULTS 

        The detection of cancer cell has been achieved through 
parallel processing with the help of CUDA (Compute Unified 
Device Architecture) using k-means clustering algorithm. 
Implementation is done with Windows operating system 32 
or 64 bit processor, Visual Studio 2017, NVIDIA CUDA 
platform, C programming language. 

        The mutation data for the cancer detection is obtained 
from the cosmic database. The obtained data is then pre-
processed using WEKA and Open CRAVAT tool. The required 
attributes for the classification are selected using Variance 
thresholding. The pre-processed data is then classified using 
CUDA K-means Clustering. The cluster obtained is compared 
with the attributes of the previously obtained cancer dataset 
and cluster is classified as benign (cancerous) or malignant 
(non-cancerous). 

The raw data and the pre-processed data are shown in 
Fig-7 and Fig-8. 

 

Fig -7: Dataset before pre-processing 

 

Fig -8: Dataset after pre-processing 

Resultant clusters obtained using parallel K-Means before 
and after feature selection are shown in Fig -9 and Fig -10. 

           Fig -9: Parallel k-means before feature selection 
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          Fig -10: Parallel k-means after feature selection 

        Thus, the time taken for running parallel k-means 
clustering algorithm before featured selection is greater than 
running k-means clustering algorithm after featured 
selection.  

Resultant clusters obtained using serial k-Means before 
and after feature selection are shown in Fig -11 and Fig-
12. 

             Fig -11: K-means before feature selection 

             Fig -12: K-means after feature selection 

        Thus, the time taken for running k-means clustering 
algorithm before featured selection is greater than running 
k-means clustering algorithm after featured selection. 

        Hence, in both CUDA and C, feature selection helps to 
minimize the runtime of the algorithm. 

The time comparison between Serial Processing VS 
Parallel Processing is shown Fig -13 
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Fig -13: Serial processing VS parallel processing 

        From the above graph it is incurred that the time 
consumed by CUDA K-means before feature selection takes  
6.6% of time taken by serial implementation and after 
feature selection 4.5% of time when compared to that of  
serial processing.  

6. CONCLUSIONS AND FUTURE WORK 

        In this paper, it is shown how to parallelize an algorithm 
(K-means algorithm) used by many applications on a highly 
parallel graphics processing architecture. Our results suggest 
that computing an algorithm in parallel environment (CUDA) 
takes lesser time than other strategies like serial processing 
and it also minimizes the overhead of CPUs.  
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        Detecting the cancer at early stage is crucial and 
essential task now-a-days for medical diagnosis. Data mining 
techniques provides facility to design and develop a 
predictive model for identifying cancer cells. This paper 
shows the implementation of these techniques in parallel 
programming approach that helps in improving the 
efficiency of the predictive model. 

        Future work includes classifying the driver mutations as 
curable and non-curable. 
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