
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3434

Scaling WebSocket Connections using Shared Workers

Shivam Kumar1

1Dept. of Information Technology, Maharaja Agrasen Institute of Technology, New Delhi, India

---***---

Abstract - WebSocket is a communication protocol which
allows full-duplex communication between the two parties i.e.
server and client. This full duplex communication is over a
single TCP protocol. In order to facilitate this communication,
each client is required to open a connection to the server and
keep it alive till the client closes the browser tab/goes offline.
In order to facilitate this persistent connection, a new
connection is needed on every browser tab of a single client
which introduces scalability issues. This paper aims to tackle
the issue using Shared Workers and reduce the load of
multiple connections on a client.

Key Words: Web sockets, Real-time communication,
Duplex communication, Web Workers, Shared Workers,
Broadcast channels, Scalability.

1. INTRODUCTION

WebSocket is a communication protocol which allows real
time communication to be established between the server
and the client.

A WebSocket connection is initialized from a HTTP request,
but the connection itself is not based on HTTP. It is layered
over the TCP. The connection is established by an opening
handshake initiated by the client that is a simple HTTP
request. It includes the special header “Upgrade: websocket”
indicating that the client would like to upgrade the
connection to the WebSocket protocol. [4]

Fig -1: Realtime communication between server and client

The client first opens a dedicated socket connection over TCP
protocol. Once the server responds, the connection is

persisted throughout the online activity. Since the connection
is bi-lateral, both the client and server have the ability to send
new messages to each other.

This connection is disconnected only when the client goes
offline or closes the browser tab.

2. ISSUES WITH SCALABILITY OF WEBSOCKETS

In order to facilitate the full duplex communication, each
client needs to open a connection with the server and keep it
alive till the time client goes offline/ closes the tab. This
persisted connection makes the interaction stateful, leading
both the sides of communication to maintain some amount of
data in memory.

The issue of scalability arises in scenarios where a client
opens multiple tabs of the same web application which is
maintaining a WebSocket connection. So, if a client has 15
tabs open, they will have 15 open connections to the server.

Fig -2: Socket communication with multiple contexts.

3. OVERVIEW OF WEB WORKERS, SHARED
WORKERS, BROADCAST CHANNELS

3.1 WEB WORKERS
They are a simple means for web content to run scripts in
background threads. The worker thread can perform tasks
without interfering with the user interface. Once created, a
worker can send messages to the JavaScript code that created

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3435

it by posting messages to an event handler specified by that
code (and vice versa). [1]

3.2 SHARED WORKERS

They are a type of web workers that can be accessed from
several browsing contexts, such as several windows, iframes
or even workers. [2]

3.3 BROADCAST CHANNELS

They are used to allow simple communication between
browsing contexts (i.e. windows, tabs, frames or iframes)
with the same origin. [3]

4. REDUCE SERVER LOADING USING WORKERS

The Shared Workers can be used for solving the issue of
scalability i.e. the problem of a single client having multiple
connections open from the same browser. The idea is to use
a Shared Worker to open the socket connection with the
server instead of every browser tab/window. We can utilize
the broadcast channel API to broadcast state change of web
socket to all the contexts (tab/window).

Thus, allowing us to communicate with and receive
messages from the server from any of the contexts. This
shared connection would be open until all the tabs of the
same origin/website are closed.

5. IMPLEMENTATION OF SERVER AND
SHAREDWORKERS

5.1 IMPLEMENTATION OF WEBSOCKET SERVER

The implementation on server side is same as a typical web
socket supporting server. Below is the code for a standard
express and WebSocket implementation of a server:

const express = require("express");

const path = require("path");

const WebSocket = require("ws");

const app = express();

// for static file requests

app.use(express.static("public"));

// Start our WS server at 5000

const wss = new WebSocket.Server({

 port: 5000

});

wss.on("connection", ws => {

 console.log('Client connected!');

 ws.on("message", data => {

 console.log(`Message: ${data}`);

 // Modify the input

 // and return the same.

 const parsed = JSON.parse(data);

 ws.send(

 JSON.stringify({

 ...parsed.data,

 messageFromServer: `Hello

 tab id: ${parsed.data.from}`

 })

);

 });

 ws.on("close", () => {

 console.log("Client disconnected");

 });

});

// Listen at 3000

app.listen(3000,() => {

 console.log("Running”);

});

Fig -3: Code for express and WebSocket server.

5.2 IMPLEMENTATION OF SHAREDWORKER

According to create any type of Worker in JavaScript, a
separate file needs to be created that houses the logic which
would be executed by the worker. Within this worker file, we
can define whatever logic we want to execute when this
worker gets initialized. After that until the last tab connecting
to this worker to this worker is not closed/ends connection
with this worker, this code cannot be re-run.

We can use the “on connect” event handler to handle each tab
connecting to this Shared Worker. Our worker.js file will look
something like this:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3436

// Open a common connection.

const ws =

 new

WebSocket("ws://localhost:2001");

// Create a broadcast channel

// to notify about state changes

const bChannel =

 new

BroadcastChannel("WebSocketChannel");

// Mapping to keep track of ports.

// Consists of uuid assigned to

context.

// This is needed because Port API

// does not have any identifier we can

// use to identify messages coming

from it.

const idToPortMap = {};

// Connected contexts know state

changes.

ws.onopen = () =>

 bChannel.postMessage({

 type: "WSState",

 state: ws.readyState

});

ws.onclose = () =>

 bChannel.postMessage({

 type: "WSState",

 state: ws.readyState

});

// When we receive data from the

server.

ws.onmessage = ({ data }) => {

 console.log(data);

 // Construct object to be passed

 const parsedData = {

 data: JSON.parse(data),

 type: "message"

 }

 if (!parsedData.data.from) {

 // Broadcast to all contexts(tabs)

 bChannel.postMessage(parsedData);

 } else {

 // Get the port to post to using

 // uuid, ie send to expected tab.

 idToPortMap[parsedData.data.from]

 .postMessage(parsedData);

 }

};

// Event handler called when a tab

// tries to connect to this worker.

onconnect = e => {

 // Get the MessagePort from the

event.

 // This will be the

 // communication channel between

 // SharedWorker and the Tab

 const port = e.ports[0];

 port.onmessage = msg => {

 // Collect port information in the

map

 idToPortMap[msg.data.from] =

port;

 // Forward this message to

 // ws connection.

 ws.send(JSON.stringify({

 data: msg.data

 }));

 };

 // We need this to notify the

 // newly connected context to know

 // the current state of WS

connection.

 port.postMessage({

 state: ws.readyState,

 type: "WSState"

 });

};

Fig -4: Code for worker.js file

There are few different things we have done here. The
following points try to clarify what we have done:

 We used broadcast channel API to broadcast the
state changes of the socket.

 We used “post Message” to the port on connection to
set the initial state of the context(tab).

 We used the “from” field from the context
themselves to identify where the redirect the
messages.

 If we do not have a “from” field set from the message
coming from the server, we broadcasted it to every
context(tab).

5.3 CONSUMING THE SHAREDWORKER

In order to consume our SharedWorker we create a “main.js”
file. This JS file holds the logic for consuming the
SharedWorker which houses the WebSocket connection. We
import this JS file in our client-side html file.

Our “main.js” file will look something like this:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3437

// Create a SharedWorker Instance

using our worker.js file.

const worker =

 new SharedWorker("worker.js");

// Create a unique identifier.

const id = uuid.v4();

// Set initial web socket state

let webSocketState =

 WebSocket.CONNECTING;

console.log(`Initialize worker for:

 ${id}

`);

// Connect to the shared worker

worker.port.start();

// Set an event listener

worker.port.onmessage = event => {

 switch (event.data.type) {

 case "WSState":

 webSocketState =

 event.data.state;

 break;

 case "message":

handleMessageFromPort(event.data);

 break;

 }

};

// Set up the broadcast channel to

listen to web socket events.

const bChannel =

 new

BroadcastChannel("WebSocketChannel");

bChannel.addEventListener("message",

 event => {

 switch (event.data.type) {

 case "WSState":

 webSocketState =

 event.data.state;

 break;

 case "message":

 handleBroadcast(event.data);

 break;

 }

});

// Listen to broadcasts from server

function handleBroadcast(data) {

 console.log("Message for everyone!");

 console.log(data);

}

// Handle event only meant for this tab

function handleMessageFromPort(data) {

 console.log(`only for user: ${id}`);

 console.log(data);

}

// Use this method to send data

// to the server.

function postMsgToWS(input) {

 if (webSocketState ===

 WebSocket.CONNECTING) {

 console.log("Still connecting!");

 } else if (

 webSocketState ===

WebSocket.CLOSING ||

 webSocketState ===

WebSocket.CLOSED

) {

 console.log("Connection Closed!");

 } else {

 worker.port.postMessage({

 // Include the sender information

 // as a uuid to get back the

response

 from: id,

 data: input

 });

 }

}

// Sent a message to server after

// approx 2.5 sec. This will give

enough

// time to web socket connection.

setTimeout(() =>

 postMsgToWS("Initial message"),

2500);```

Fig -5: Code for client side main.js using SharedWorkers

6. SENDING MESSAGES TO SHARED WORKERS

As we saw above, we can send messages to this
SharedWorker using “worker.port.postMessage()” method.

A good practice here can be passing an object that contains
the context from which the message is coming so that worker
can act accordingly. So, for example, if we have a chat app
where one of the tabs wants to send a message, we can use
something a JS object something like this:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3438

// Define type, from and value

properties

{

 type: 'message',

 from: 'Context1'

 value: {

 text: 'Hello World',

 createdAt: new Date()

 }

}

Fig -6: JS Object representing a message

7. LISTENING TO MESSAGES FROM THE WORKER

We had set up a map in the beginning to keep track of
Message Ports of different tabs. We then setup a
worker.port.onmessage event handler to handle events
coming from the Shared Worker directly to the tab.

In cases where the server doesn’t set a from field, we just
broadcast the message to all tabs using a broadcast channel.
All tabs will have a message listener for the WebSocket
Channel which will handle all message broadcasts.

This type of a set up can be used in following 2 scenarios:

 Let’s say you’re playing a game from a tab. You only
want the messages to come to this tab. Other tabs
won’t be needing this information. This is where you
can use the first case.

 Now, if you were playing this game on Facebook, and
got a text message. This information should be
broadcasted across all tabs as the notification count
in the title would need to be updated.

9. SHORTCOMINGS

Apart from all the advantages which we get by utilizing
SharedWorkers along with standard web socket connection,
there are still some rough edges around the implementation.

One of limitation of this approach is the message which is
sent between the contexts. The messages sent are not
references but deep copies instead. Thus, if a JS object is
passed between contexts, a deep copy of the object will be
created and sent which might create a bottleneck.

Also, this implementation cannot be extended for older
browsers because of lack of support for Web workers.

9. CONCLUSION

In a nutshell, WebSockets is powerful protocol which allows
us to initiate a full-duplex connection between the server
and a client. However, it suffers in terms of scalability. One of
the reasons contributing to this issue is the requirement of a
dedicated connection for each context (tab/window) on the
client machine.

We can utilize the power of SharedWorkers and Broadcast
Channels to limit the number of required connections to just
one dedicated connection. We then utilize the Broadcast
Channel API to communicate the messages between
contexts. Thus, mitigating this issue of multiple dedicated
connections for a single client. Final diagrammatic
representation of our system will look something like this:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3439

REFERENCES

[1] MDN, “Using Web Workers “, 2020,

https://developer.mozilla.org/en-
US/docs/Web/API/Web_Workers_API/Using_web_wo
rkers

[2] MDN, “SharedWorkers”, 2020,
https://developer.mozilla.org/en-
US/docs/Web/API/SharedWorker

[3] MDN, “Broadcast Channel”, 2020,
https://developer.mozilla.org/en-
US/docs/Web/API/Broadcast_Channel_API

[4] Lakshminarasimhan Srinivasan, Julian Scharnagl, Klaus
Schilling, Analysis of WebSockets as the New Age
Protocol for Remote Robot Tele-operation, 2010

