
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3359

Generation and Presentation of Metadata for Movies using Computer

Vision and Machine Learning

Shashank C1, Veena Gadad2

1Dept. of Computer Science and Engineering, R.V College of Engineering, Bangalore India
2Dept. of Computer Science and Engineering, R.V College of Engineering, Bangalore India

---***--
Abstract - Entertainment and media are a large part of our
lives these days, we watch many of our favorite TV shows and
Movies on streaming sites such as Netflix, Hulu, Amazon prime
and Sling TV. User engagement and retention is very
important on these platforms. To do this features like content
recommendation systems and auto skip the shows intro and
outro have been implemented. We propose another such
feature that will improve the audience user experience with
the platform. It is a method of generating and presentation of
metadata for movies using computer vision and machine
learning.

Each movie or TV show have a wide range of characters and
scenes in them, ranging from 10 to a 100 actors, and multiple
shots. The feature allows the user to pause the movie or TV
show to display the actors in the current shot, or search the
entire movie for all occurrences of an actor. The principle
behind this system is, shot detection and face detection based
on computer vision.

Key Words: shot detection, face detection, computer vision,
API’s, TMdb, ANN, Histogram oriented gradients, REST API’s,
JSON, BSON, Database.

1. INTRODUCTION

Staying on top of your competition is important for
any business, this is even more important in the fast moving
present age, where platforms are being updated regularly to
cater to users requirements. This feature aims to improve
the user experience of a viewer by involving them more into
the people involved in making the movie and other
information based on the content of the movie. Moreover
indexing of movies based on shots and actors in the movie
may prove useful in other ways in the future. Metadata here
means the extra data that stores information about the
movie, such as the start and end timestamps and frame
number for each shot along with the actors in that shot.

Since there exists a huge volume of movies already
on these platforms, we require an automated way to
generate these metadata and store them in a database. The
client (viewer’s browser or TV) can then make API calls to a
server to obtain the metadata when a movie is being
watched. To achieve this the entire process is divided into
two separate stages, a preprocessing stage and playback
stage. The preprocessing stage is performed only once for

each movie, and its purpose is to cache the metadata in a
database. This stage need not be completely automated and
can involve some manual addition of data. The main reason
to automate it is to generate metadata for already existing
movies. New movies can have an option to add this metadata
manually by the movie producers. The playback stage is
what occurs when the user presses play on a certain movie.
This paper is organized by the steps involved in the entire
process. The next two sections will go into each of these
steps in overview, and the rest of the paper goes into each
step in detail.

1.1 Preprocessing stage

During the preprocessing stage (fig-1), the system
acquires the cast of the movie from TMdb (The movie
database), performs shot segmentation and matches the faces
to the cast of the movie. TMdb contains a vast database of
movies of various genre, cast, languages, and details of each
cast members and so on. More importantly it also lets you get
the images of the cast members, which is required for the face
identification system to compare against. Each shot of the
movie is put through the face matching process to identify all
actors present in that shot, this obviously comes with many
issues that we will see later. For any given movie any
detected face needs to be only compared against the faces of
the cast of that movie.

1.2 Playback stage

The playback stage (fig-2) involves the client querying the
backend server when required, the information is delivered
via a REST API. When the user clicks to view a movie, it
automatically fetches the metadata from the backend server.
The client application will have a video player with widgets
to show the list of actors and other related data like the
images of the actors.

2. METHODOLOGY

This section describes the entire process in more detail,
with all the steps involved to go from the movie to the movie
being played by a user on the platform.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3360

Fig -1: Preprocessing stage

Fig -2: Playback stage

1.1 Shot Segmentation

A shot is an uninterrupted recording from a camera. Not
to be confused with a scene, which is a series of shots that are
part of the same logical act in the movie or TV show. Two
shots are always separated by a cut or transition. A few
common cuts seen in movies and shows are soft cuts and
hard cuts. A Soft cut is a gradual transition from one shot to
another whereas a hard cut is an abrupt transition from one
shot to another.

Shot transition detection or cut detection involves finding
the cuts from a continuous video (also called video
segmentation, shot boundary detection, video parsing).

A general algorithm to pinpoint the timestamps of the cuts
is what is required. From the review of current
methodologies it is seen that soft cuts are generally harder to
detect when compared to hard cuts as it involves the change
taking place over a larger temporal space of around 10-20
frames, whereas hard cuts take maybe 2-3 frames to occur.
Common issues in current methodologies are wrongly
detecting a cut where the camera pans fast (true negative)
and missing a soft cut because it was too slow (false positive)
etc.

Since about 95 % of cuts in movies are hard cuts we use a
simple method that uses pixel intensity histograms between
successive frames with adaptive thresholds. This method is
slightly more complex when compared to the absolute pixel
to pixel difference method but performs a lot better owing to
using histograms to take into consideration the color
distribution over the entire frame and the fact that it uses

adaptive thresholds. It is capable of detecting hard cuts
effortlessly and detecting soft cuts with moderate certainty.

Advantages of using this method are that it is very fast
and can be parallelized easily. It also performs very well
compared to other methods which contain many parameters
to tweak. It also detects mood shifts in the movie depending
on the histogram shape.

1.2 Getting Cast from TMdb

 TMdb is an online database of movies, TV shows,
commonly referred to as HOGs, along with an artificial neural
network (ANN).

Fig -3: Cast of Lord of the rings from TMdb

1.3 Face Detection and Identification

 Face detection involves only saying if a face is present in
an image or sequence of images, on the other hand face
identification is identifying a face as a specific person. From
the state of the art we see that there are many ways that faces
are detected and identified. The method we chose was the
Histogram oriented gradients, commonly referred to as
HOGs, along with an artificial neural network (ANN).

An overview of the face identification pipeline involves
Generating gradients for each 16 x 16 cell of pixels. The
gradients by definition always point in the direction of the
largest change in brightness. A Face landmark estimation is
done using an ANN using 68 landmarks. An affine
transformation is applied to get rid of the variations in
position, scale, and orientation of the face. The face is
encoded into a set of features having 128 measurements.
After a classifier can be used to get the name of person from
the encoding.

The advantage of using a HOG is that it detects spatial
structures in images very well, and runs very quickly, as the
aim is to pre-process a huge amount of media quickly, HOG
fits the use case very well.

1.4 Caching in MongoDB

 MongoDB is a NoSQL, document oriented database. It is
perfect to store soft real-time data such as this. It also has
very well documented drivers for multiple languages
including python. The generated metadata is stored into a
collection, to be queried when viewers watch the movie. The
metadata for each movie needs to be stored separately to
search based on the movie. The schema needs to allow for
fast searching of all timestamps related to a particular movie,
and have the timestamps sorted so the client doesn’t have to.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3361

Along with shot segmentation and face identification the
preprocessing stage discussed in the previous sections the
preprocessing stage also involves caching the generated
metadata into the database. The python driver for MongoDB
is used to do this. The generated data is converted into BSON
formatted data and then inserted into a MongoDB collection.
The schema of the collections would look like the schema
shown in fig1.

Fig -4: database schema for movies and shots

The reason to group them this way is because the viewer

might decide to view the genre and description of the story
before watching, and getting the entire shots data would not
be required at this point. When the user clicks to watch the
movie is when the shots data can be requested by the client.
And the entire shots document comes in presorted, making
the process efficient.

1.5 Building the REST API

 REST API’s forms the backbone of modern internet
services, it is a software architectural style that allows access
to resources over the network in a uniform and consistent
way. It basically allows the client to get access to the
metadata without having explicit connection to the server
database, instead it goes through a server process that acts as
an adapter to the database. Python provides a framework
called Flask to handle these RESTful requests from the client
and return JSON formatted data back to the client.

Pymongo is a MongoDB driver for python, as discussed
previously. It is also used during the playback stage of the
process in the server side. Flask is a python framework to
handle http requests, and to create RESTful API’s.

Any API has endpoints that need to be defined, this method
has two endpoints, one for movies and another for shots for a
particular movie. The movie endpoint serves the client for the
general overview, plot description, genre of the movie. The
shots endpoint provides the shots metadata when the movie
begins playing.

1.6 Building the Frontend

 The frontend is the final component of the entire system,
it is a basic web application that makes requests to this API
and plays the movie, with displaying the metadata in a
presentable form. It consists of a video player that has all of
the basic requirements of a video player like pause, resume,
full screen, timeline etc. A widget shows the current actors on
screen in the current shot. To implement these we have
chosen JavaScript and an accompanying library Video.js.

JavaScript is a just in time compiled language that is
mainly used in browsers, and is used to make webpages
responsive, make API calls, read and write to the webpage
during runtime etc.

Video.js is a simple JavaScript based web player built from
the ground up for a HTML5 video, it runs on any modern
browser and gives a simple interface to the playback
variables.

The frontend makes API requests to the backend when
the video needs to be played. And selects the appropriate
metadata to display. The WebApp is made using HTML, CSS
and JavaScript to make requests to the backend through API
calls.

Just before the movie is loaded to begin playing, the API
call is made to fetch all the shot and actor metadata. When
playing, the current shots are found by the timestamps of the
current play head and the relevant HTML is modified to show
the images and names of the actors in the shot.

Fig -5: Frontend showing the video player and widget to
show actors in current shot.

3. CONCLUSION

This paper discusses a method to improve user viewership
and retention. It increases the sense of community among
the viewers, bridging the gap between movie producers and
viewers. It also provides a base for future work with this
metadata, like searching for all the shots a particular actor
appears, or all shots that a set of actors are present in the
same shot.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3362

REFERENCES

[1] Zeeshan Rasheed and Mubarak Shah ‘Scene Detection In

Hollywood Movies and TV Shows’ School of Electrical
Engineering and Computer Science University of Central
Florida Orlando, Fl 32816.

[2] Muhammad Haroon, Junaid Baber, Ihsan Ullah, Sher
Muhammad Daudpota, Maheen Bakhtyar, and Varsha
Devi, ‘Video Scene Detection Using Compact Bag of
Visual Word Models’ Department of Computer Science &
IT, University of Balochistan, Pakistan, Department of
Computer Science, Sukkur IBA University, Pakistan,
Department of Computer Science, Sardar Bahadur Khan
Women’s University, Pakistan.

[3] Michael Gygli, ‘Ridiculously Fast Shot Boundary
Detection with Fully Convolutional Neural Networks’
Zurich, Switzerland.

[4] Rainer Lienhart, ‘Comparison of Automatic Shot
Boundary Detection Algorithms’ Microcomputer
Research Labs, Intel Corporation, Santa Clara, CA 95052-
8819.

[5] Ramin Zabih, Justin Miller, Kevin Mai, ‘A Feature Based
Algorithm for Detecting and Classifying Scene Breaks’
Computer Science Department Cornell University Ithaca
NY.

[6] Jihua WANG, Tat-Seng CHUA and Liping CHEN,
‘CINEMATIC-BASED MODEL FOR SCENE BOUNDARY
DETECTION’ National University of Singapore,
Singapore 117543.

[7] S. T. Gandhe, K. T. Talele, and A.G.Keskar. ‘Face
Recognition Using Contour Matching’, IAENG
International Journal of Computer Science, 35:2,
IJCS_35_2_06.

[8] Vahid Kazemi and Josephine Sullivan, ‘One Millisecond
Face Alignment with an Ensemble of Regression Trees’
KTH, Royal Institute of Technology Computer Vision and
Active Perception Lab Teknikringen 14, Stockholm,
Sweden.

[9] Tat-Seng CHUA, Mohan Kankanhalli and Yi Lin, ‘A
GENERAL FRAMEWORK FOR VIDEO SEGMENTATION
BASED ON TEMPORAL MULTI-RESOLUTION ANALYSIS’
School of Computing, National University of Singapore.

[10] Histograms of Oriented Gradients for Human Detection
Navneet Dalaland Bill Triggs INRIARh one-Alps, 655
avenuedel’ Europe, Montbonnot 38334, France
{Navneet.Dalal,Bill.Triggs}@inrialpes.fr,
http://lear.inrialpes.fr

http://lear.inrialpes.fr/

