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ABSTRACT : Memory is a main component of the digital 
system. Memories are used to store the data within the 
system. Every system needs memory to store the data and 
process the data to complete its operation successfully. 
Memory can volatile or non-volatile, volatile memory 
stores the data until unless power is supplied. Non-volatile 
memory stores the data even after the power is removed. 
Random Access Memory (RAM) is of Volatile memory and 
Read Only Memory (ROM) is a Non- volatile memory. In 
this paper we learn the different types of RAM and ROM 
and their operation in detail. Speed of the system depends 
on type of the memory used in the system.  

 INTRODUCTION  

In this paper, we will discuss various types of memory 
provided by manufacturers, either as individual 
integrated circuits or as resources within ASIC or FPGA 
fabrics. We will discuss the distinguishing properties of 
each kind of memory, including their timing 
characteristics and costs, and describe how to model 
some of them in Verilog. We will distinguish between 
memory that can be both read and written, called 
random access memory (RAM), and memory that can 
only be read, called read-only memory (ROM). We use 
the term RAM instead of read/write memory largely for 
historical reasons. Memories in very early computers 
enforced sequential access, that is, access to locations in 
increasing order of address, due to the physical medium 
on which the data was stored. The invention of memories 
in which locations could be read and written with equal 
facility in any order was a significant milestone, and so 
the term RAM has stuck.  

 ASYNCHRONOUS STATIC RAM 

One of the simplest forms of memory is asynchronous 
static RAM. It is asynchronous because it does not rely on 
a clock for its timing. The term static means that the 
stored data persists ndefinitely so long as power is 
applied to the memory component. Static RAM is volatile, 
meaning that it requires power to maintain the stored 
data, and loses data if power is removed.  Since engineers 
are fond of abbreviations, the term static RAM is usually 
further shortened to SRAM. Asynchronous SRAM 
internally uses 1-bit storage cells that are similar to the 
D-latch circuit. Within the memory component, the 
address is decoded to select a particular group of cells 
that comprise one location. For largely historical reasons, 
most manufacturers use active-low logic for the control 
signals. Further, since asynchronous SRAMs are usually 

only available as packaged integrated circuits, and not as 
blocks in ASIC libraries or FPGAs, they usually have 
bidirectional tristate data input/output pins.  

Given that the storage cells in an asynchronous SRAM are 
basically latches, it is not surprising that the timing is 
similar to that of a D-latch. The control section that 
sequences the datapath containing the memory must 
ensure that the address is stable before commencing the 
write operation and is held stable during the entire 
operation. Otherwise, locations other than the one to be 
updated may be affected.  In isolation, we can also 
perform back-to-back read operations simply by 
changing the address value. The read operation is 
essentially a combinational operation, involving 
decoding the address and multiplexing the selected latch-
cell’s value onto the data outputs. Changing the address 
simply causes a different cell’s value to appear on the 
outputs after a propagation delay.  

Manufacturers of asynchronous SRAM chips publish the 
timing parameters for write and read operations in data 
sheets. The parameters typically include setup and hold 
times for address and data values, and delays for turning 
tristate drivers on and off.   

 

Fig1: Timing for write and read operations in an 
asynchronous SRAM. 

 Other performance-related parameters are the write 
cycle time and the read cycle time, which are the times 
taken to complete write and read operations, 
respectively. Manufacturers offer chips in different speed 
grades, with faster chips usually costing more. This 
allows us, as designers, to make cost/performance trade-
offs in our designs.  

While asynchronous SRAMs are conceptually simple and 
have simple timing behavior, the fact that they are 
asynchronous can make them difficult to use in clocked 
synchronous systems. The need to set up and hold 
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address and data values before and after activation of the 
control signals and to keep the values stable during the 
entire cycle means that we must either perform 
operations over multiple clock cycles, or use delay 
elements to ensure correct timing within a clock cycle. A 
asynchronous SRAMs are usually used only in systems 
with low performance requirements, where their low 
cost is a benefit.  

SYNCHRONOUS STATIC RAM 

Given the difficulties associated with asynchronous 
SRAMs, many memory component vendors and 
implementation fabrics provide synchronous SRAMs, 
otherwise known as SSRAMs. The internal storage cells 
of SSRAMs are the same as those of asynchronous 
SRAMs. However, the interface includes clocked registers 
for storing the address, input data and control signal 
values, and in some cases, output data. In this section, we 
will describe two forms of SSRAMs in general terms. The 
details of control signals and timing will vary between 
SSRAMs provided by different component vendors and 
implementation fabrics. As always, we need to read and 
understand the data sheets before using a component in 
a design.  

The simplest kind of SSRAM is often called a flowthrough 
SSRAM. It includes registers on the inputs, but not on the 
data outputs. The term flow-through refers to the fact 
that data read from the memory cells flows through 
directly to the data outputs. Having registers on the 
inputs allows us to generate the address, data and 
control signal values according to our clocked 
synchronous design methodology, ensuring that they are 
stable in time for a clock edge.  

 

Fig2: Timing for a flow-through SSRAM. 

Another method of SSRAM is called a pipelined SSRAM. It 
includes a register on the data output, as well as registers 
on the inputs. If there is no time in which to perform 
combinational operations on the read data before the 
next clock edge, it needs to be stored in an output 
register and used in the subsequent clock cycle. A 
pipelined SSRAM provides that output register. We 
declare a variable to represent the stored register value 

and assign a new value to it on a rising clock edge. We 
can promote this approach to model an SSRAM in 
Verilog. We need to declare a variable that represents all 
of the locations in the memory. The way to do this is to 
declare an array variable, which represents a collection 
of values, each with an index that corresponds to its 
location in the array. For example, to model a 4K*16-bit 
memory, we would write the following declaration: reg 
[15:0] data_RAM [0:4095];  

The declaration specifies a variable named data_RAM 
that is an array with elements index from 0 to 4095. Each 
element is a 16-bit vector. Once we have declare the 
variable representing the storage, we declare an always 
block that performs the write and read operations. The 
block is similar in form to that for a register. For example, 
an always block of a model a flow-through SSRAM based 
on the  

variable declaration above is  

always @(posedge clk)  

if (en) if (wr) begin data_RAM[a] <= d_in; d_out <= d_in; 
end else  

d_out <= data_RAM[a];  

Since there are many minor difference on the general 
concept of a pipelined SSRAM, it is hard to present a 
general template, especially one that can be recognized 
by synthesis tools. A common alternative approach is to 
use a CAD tool that generates a memory circuit and a 
Verilog model of that circuit. We can then instantiate the 
generated model as a component in a larger system.  

 MULTIPORT MEMORIES 

A multiport memory usually consumes more circuit area 
more than a single-port memory with the same number 
of bits of storage, since it has separate address decoders 
and data multiplexers for each access port. Only the 
internal storage cells of the memory are shared between 
the multiple ports, though additional wiring is needed to 
connect the cells to the access ports. However, the cost of 
the extra circuit area is necessitate.  

In some applications, such as high performance graphics 
processing and high-speed network connections. 
Suppose we have one subsystem producing data to store 
in the memory, and another subsystem accessing the 
data to process it in some way. If we use a single-port 
memory, we would need to multiplex the addresses and 
input data from the subsystems into the memory, and we 
would have to arrange the control sections of the 
subsystems so that they take turns to access the memory.  

There are two potential problems here. First, if the 
combined rate at which the subsystems need to move 
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data in and out of the memory exceeds the rate at which 
a single access port can operate, the memory becomes a 
bottleneck. Second, even if the average rates don’t exceed 
the capacity of a single access port, if the two subsystems 
need to access the memory at the same time, one must 
wait, possibly causing it to lose data. Having separate 
access ports for the subsystems obviates both of these 
problems. The only remaining difficulty is the case of 
both subsystems accessing the same memory location at 
the same time. If both accesses are reads, they can 
proceed. If one or both is a write, the effect depends on 
the a feature of the particular dual-port memory. In an 
asynchronous dual-port memory, a write operation 
performed concurrently with a read of the same location 
will result in the written data being reflected on the read 
port after some delay. Two write operations performed 
concurrently to the same location result in an 
unpredictable value being stored. In the case of a 
synchronous dual-port memory, the effect of concurrent 
write operations depends on when the operations are 
performed internally by the memory. We should advice 
from the data sheet for the memory component to 
understand the effect.  

Some multiport memories, particularly those 
manufactured as packaged components, provide 
additional circuits that compare the addresses on the 
access ports and indicate when contention arises. They 
may also provide circuits to arbitrate between conflicting 
accesses, ensuring that one proceeds only after the other 
has completed. If we are using multiport memory 
components or circuit blocks that do not provide such 
features and our application may result in conflicting 
accesses, we need to include some form of arbitration as 
a separate part of the control section in our design. An 
alternative is to ensure that the subsystems accessing the 
memory through separate ports always access separate 
location.  

 

Fig3: Datapath for a FIFO using a dual-port memory. 

One specialized form of dual-port memory is a firstin 
first-outmemory, or FIFO. It is used to queue data 
arriving from a source to be processed in order of arrival 
by another subsystem. The data that is first in to the FIFO 
is the first that comes out; hence, the name. The most 
common way of building a FIFO is to use a dual-port 

memory as a circular buffer for the data storage, with one 
port accepting data from the source and the other port 
reading data to give to the processing subsystem. Each 
port has an address counter to keep track of where data 
is written or read. Data written to the FIFO is stored in 
successive free locations. When the write-address 
counter reaches the last location, it wraps to location 0. 
As data is read, the read-address counter is advanced to 
the next available location, also wrapping to 0 when the 
last location is reached. If the write address wraps 
around and catches up with the read address, the FIFO is 
full and can accept no more data. If the read address 
catches up with the write address, the FIFO is empty and 
can provide no more data. FIFO can store a variable 
amount of data, depending on the rates of writing and 
reading data. The size of memory requied in a FIFO 
depends on the maximum amount by which reading of 
data lags writing. Determining the maximum size may be 
difficult to do. We may need to evaluate worst-case 
scenarios for our application using mathematical or 
statistical models of data rates or using simulation.  

 DYNAMIC RAM  

Dynamic RAM (DRAM) is another form of volatile 
memory that uses a different form of storage cell for 
storing data. Static RAM uses storage cells that are 
similar to D-latches. In contrast, a storage cell for a 
dynamic RAM uses a single capacitor and a single 
transistor, The DRAM cells are thus much smaller than 
SRAM cells, so we can fit many more of them on a chip, 
making the cost as per bit of storage lower. However, the 
access times of DRAMs are longer than those of SRAMs, 
and the complexity of access and control is greater. Thus, 
there is a trade-off of cost, performance and complicated 
against memory capacity. DRAMs are most commonly 
used as the main memory in computer systems, since 
they desires of the need for high capacity with relatively 
low cost. However, they can also be used in other digital 
systems. The choice between SRAM and DRAM depends 
on the requirements and constraints of each application.  

When the transistor is turned off, the capacitor is isolated 
from the bit line, thus storing the charge on the capacitor. 
To write to the cell, the DRAM control circuit pulls the bit 
line high or low and turns on the transistor, thus 
charging or discharging the capacitor. To read from the 
cell, the DRAM control circuit precharges the bit line to 
an intermediate level, then turns on the transistor. As the 
charges on the capacitor and the bit line equalize, the 
voltage on the bit line either increases slightly or 
decreases slightly, depending on whether the storage 
capacitor was charged or discharged.   

A sensor detects and amplifies the change, thus 
determining whether the cell stored a 1 or a 0. 
Unfortunately, this process destroys the stored value in 
the cell, so the control circuit must then restore the value 
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by pulling the bit line high or low, as appropriate, before 
turning off the transistor. The time taken to complete the 
restoration is added to the access time, making the 
overall read cycle significantly longer than than that for 
an SRAM. Off, the capacitor is isolated from the bit line, 
thus storing the charge on the capacitor. To write to the 
cell, the DRAM control circuit pulls the bit line high or 
low and turns on the transistor, thus charging or 
discharging the capacitor. To read from the cell, the 
DRAM control circuit precharges the bit line to an 
intermediate level, then turns on the transistor. As the 
charges on the capacitor and the bit line equalize, the 
voltage on the bit line either increases slightly or 
decreases slightly, depending on whether the storage 
capacitor was charged or discharged. A sensor detects 
and amplifies the change, thus determining whether the 
cell stored a 1 or a 0. Unfortunately, this process destroys 
the stored value in the cell, so the control circuit must 
then restore the value by pulling the bit line high or low, 
as appropriate, before turning off the transistor. The time 
taken to complete the restoration is added to the access 
time, making the overall read cycle significantly longer 
than than that for an SRAM.  

 

Fig4: A DRAM storage cell. 

Another property of a DRAM cell is that, while the 
transistor is turned off, charge leaks from the capacitor. 
This is the meaning of the term “dynamic” applied to 
DRAMs. To compensate, the control circuit must read and 
restore the value in each cell in the DRAM before the 
charge decays too much. This process is called refreshing 
the DRAM. DRAM manufacturers typically specify a 
period of 64ms between refreshes for each cell. The cells 
in a DRAM are typically organized into several 
rectangular arrays, called banks, and the DRAM control 
circuit is organized to refresh one row of each bank at a 
time. Since the DRAM cannot perform a normal write or 
read operation while it is refreshing a row, the refresh 
operations must be interleaved between writes and 
reads. Depending on the application, it may be possible to 
refresh all rows in a burst once every 64ms. 
Alternatively, we may have to refresh one row at a time 
between writes and reads, making sure that all rows are 
refreshed within 64ms. The important thing is to avoid 
scheduling a refresh when a write or read is required and 
cannot be deferred.  

Historically, timing of DRAM control signals used to be 
asynchronous, and management of refreshing was 

performed by control circuits external to the DRAM 
chips. More recently, manufacturers changed to 
synchronous DRAMs (SDRAMs) that use registers on 
inputs to sample address, data and control signals on 
clock edges. This is analogous to the difference between 
asynchronous and synchronous SRAMs, and makes it 
easier to incorporate DRAMs into systems that use a 
clocked synchronous timing methodology. Manufacturers 
have also incorporated refresh control circuits into the 
DRAM chips, also making use of DRAMs easier. Since 
applications with very high data transfer rate 
requirements may be limited by the relatively slow 
access times of DRAMs, manufacturers have more 
recently incorporated further features to improve 
performance. These include the ability to access a burst 
of data from successive locations without having to 
provide the address for each, other than the first, and the 
ability to transfer on both rising and falling clock edges. 
These features are mainly motivated by the need to 
provide high-speed bursts of data in computer systems, 
but they can also be of benefit in non-computer digital 
systems. Because of the relative complicated of 
controlling DRAMs, we will not go into detail of the 
control signals required and their sequencing.  

 READ-ONLY MEMORIES 

The memories that we have seen so far has a ability to do 
both read the stored data and update it autocratically. In 
contrast, a read-only memory, or ROM, has only ability to 
read the stored data. This is useful in cases where the 
data is constant, so there is no need to update it. The data 
is either incorporated into the circuit during its 
manufacture, or is programmed into the ROM 
subsequently. We will describe number of ROM that take 
one or other of these approaches.  

Combinational ROMs  

A simple ROM is a combinational circuit that points from 
an input address to a constant data value. We could 
specify the ROM satisfy in tabular form, with a row for 
each address and an entry showing the data value for 
that address. Such a table is essentially a truth table, so 
we could, in principle, implement the mapping using the 
combinational circuit design techniques. However, ROM 
circuit structures are generally much denser than 
arbitrary gate-based circuits, because each ROM cell 
needs at most one transistor. Indeed, for a complex 
combinational function with multiple outputs, it may be 
better to use a ROM to implement the function than a 
gatebased circuit.  

In FPGA fabrics that will provide SSRAM blocks, we can 
use an SSRAM block as a ROM. We modify the always-
block template for the memory to omit the part that 
updates the memory content. We could include a case 
statement to determine the data output. The content of 
the memory is loaded into the FPGA as part of its 
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programming when the system is turned on. Thereafter, 
since the data is not updated, it is constant. For large 
ROMs, writing the data directly in the Verilog code like 
this is very cumbersome. Values are read from the file 
into successive elements of the specified variable until 
either the end of the file is reached or all elements of the 
variable are loaded. 

 Programmable ROMs  

ROMs in which the contents are manufactured into the 
memory are suitable for applications where the number 
of manufactured parts is high and where we are sure that 
the contents will not need to change over the lifetime of 
the product. In other applications, we would prefer to be 
able to revise the ROM contents from time to time, or to 
use a form of ROM with lower costs for low-volume 
production. A programmable ROM (PROM) meets these 
requirements. It is manufactured as a separately 
packaged chip with no content stored in its memory cells. 
The memory contents are programmed into the cells 
after manufacture, either using a special programming 
device before the chip is assembled into a system, or 
using special programming circuits when the chip is in 
the final system. There are a number of forms of PROMs. 
Early PROMs used fusible links to program the memory 
cells. Once a link was fused, it could not be replaced, so 
programming could only be done once. These devices are 
now largely obsolete. They were replaced by PROMs that 
could be erased, either with ultraviolet light so its called 
as EPROMs, or electrically using a higher-than-normal 
powersupply voltage so its called as electrically erasable 
PROMs, or EEPROMs.  

Flash Memories  

Most new designs use flash memory, which is a form of 
electrically erasable programmable ROM. It is organized 
so that blocks of storage can be erased at once, followed 
by programming of individual memory locations. A flash 
memory typically allows only a limited number of 
erasure and programming operations, typically hundreds 
of thousands, before the device “wears out.” Thus, flash 
memories are not a suitable replacement for RAMs. 
There are two kinds of flash memories, NOR and NAND 
flash, referring to the organization of the transistors that 
make up the memory cells. Both kinds are organized as 
blocks (commonly of 16, 64, 128, or 256 Kbytes) that 
must be erased in whole before being written. In a NOR 
flash memory, locations can then be written (once per 
erasure) and read (an arbitrary number of times) in 
random order. The IC has similar address, data and 
control signals to an SRAM and can read data with a 
comparable access time, making it suitable for use as a 
program memory for an embedded processor, for storing 
configuration parameters to be used to control system 
operation, and for storing configuration information for 
FPGAs.  

In a NAND flash memory, on the other hand, locations are 
written and read one page at a time, a page being 
typically 2 Kbytes. Read access to a given location would 
require reading the page containing the location, 
followed by selection of the required data, taking several 
microseconds. If all of the locations in a page are 
required, however, sequential reading is much faster, 
comparable in time to SRAM. Erasing a block and writing 
a page of data are significantly slower than SRAM access 
times. For example, the data sheet for the Micron 
Technology MT29F16G08FAA 16G bit IC specifies a 
random read time of 25µs, a, sequential read time of 
25ns, a block erase time of 1.5ms, and a page write time 
of 220µs. Given their different access behavior, NAND 
flash memories have a different interface than SRAMs, 
making control circuits more involved. The advantage of 
NAND flash memory is that the density of storage cells is 
greater than that of NOR flash. Thus, NAND flash chips 
are better suited to applications in which large amounts 
of data must be stored cheaply. One of the largest 
applications of NAND flash memories is in memory cards 
for consumer devices such as digital cameras. They are 
also used in USB memory sticks for general purpose 
computers.  
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