
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2332

AN ANALYSIS OF QUERY PERFORMANCE: MONGODB n SQL

Harshitha R1, Vidya Raj C2

1Student, MTech-Information Technology, The National Institute of Engineering, Mysuru, Karnataka, India
2Professor, Dept. of CS&E, The National Institute of Engineering, Mysuru, Karnataka, India

---***--
Abstract As the internet technology evolves, the data set
gets boom, currently it is challenging to handle the Big Data.
Complexity and huge data set are the main reasons to come up
with MongoDB. Many departments, warehouses and corporate
companies are switching from SQL to NoSQL. In this paper, we
are using MongoDB - a NoSQL database and MySQL - a SQL
database. The NoSQL database provides the best and faster
performance for the large volume of data, it is highly scalable
and mainly eliminates the duplication of data. This paper aims
to provides the detailed performance analysis along with
mapping of MongoDB with SQL, advantages and a study of
comparisons of CRUD operations. The outcome shows us the
MongoDB givers better results and is dynamic.

Key Words: MySQL, MongoDB, NoSQL, Analysis with
MongoDB with SQL

1. INTRODUCTION

From the past few years relational database system is used
as a primary DB to store the data. Increase in the usage of
internet also increased the structured, unstructured and
semi-structured data. While SQL Server is reasonably priced
for licensing, it is still expensive as cores grow and there are
limits to the small scales of some applications. The
complexity of licensing also means that it becomes complex
to manage this across time, as well as more expensive. SQL
allows duplication - A property appears multiple times in the
table. It must be stored across multiple tables in case of
indexing and mapping, this makes the data repetition hence
tables structure becomes complex and querying takes time.
SQL is mainly a schema oriented structured database hence
handling with the huge unstructured data becomes
challenging and reduces the performance and scalability.
The use of NoSQL – not only SQL databases like MongoDB
avoids all these main drawbacks and provides the enhanced
performance of read and write operations for larger volume
of data set. Hence there is a huge transformation of usage in
NoSQL databases in this recent and current era and is still
growing.

2. RELATED WORKS

As the essential focus is to migrate the data from SQL to
MongoDB and to reduce the process overhead involved in
migration process. Even though there are multiple
algorithms available it is difficult to implement the
functionality of SQL queries in to MongoDB. The method
implements the graphical user interface to convert the

queries automatically. It reduces the burden of syntax
studying [1].

Metadata provides the information about other data; A
method is proposed where in the Metadata layer acts as an
interface between database layer and application layer,
which supports the SQL query language to No SQL query
language by conversion. Metadata holds the routing
information for the conversion form one format to another
[2]. A relative comparison of NoSQL to SQL mainly by
considering their concepts and commands are focused [4].

An experimental setup comparing the two different
databases and measuring the performance by its runtime, it
contains four separate test runs with hundred each run. The
outcome shows SQL performs better with updating and
selecting non-key attributes while MongoDB provides the
best results in all the operations [5].

The evaluation of performance in Big e-commerce databases
includes the set of experiments with many operations such
as read, write, select and delete from different aspects and
provides the data with different complexities can be easily
handled with MongoDB over SQL. [7]

Fig-1: Structure of MongoDB

3. OVERVIEW OF MONGODB

MongoDB is a Document based database of NoSQL type that

provides us with increased availability and scaling as its

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2333

major features. It stores the data in JSON format and

provides JavaScript functions to query that data [1], which

meaning fields can vary from document to document and

data structure can be changed over time. MongoDB is free of

cost as it is an open source. It mainly avoids the table

structures, it implements a simple collection containing

documents. MongoDB uses the port 27017 for the client

connection. ‘Mongod’ is the important process which handles

all the tasks of MongoDB server. MongoDB allows ad-hoc

querying and aggregations, which provides the real time

powerful access and analysing the data. The generic

structure of MongoDB is defined in Fig-1.

3.1 Reasons Why MongoDB

3.1.1 Schemaless

The JSON based MongoDB is schemaless, the documents of
the database can have varying number of fields with
different data types. The data is stored in JSON format or as
(Key, Value) pair and there are no limitations on number of
pairs in a document. Any database architect can easily
design a database without rigid schema structure thus it
does not need to follow 3NF form of Normalization as of
SQL. In case of SQL, when the ongoing process is needing to
be modified, it takes time to redesign the schema plan and
to recontinue the process. Thus, MongoDB is dynamic and
flexible to use.

3.1.2 Sharding
As the data grows the demand for the storage also increases,

MongoDB uses the sharding concept. When a machine is

having insufficient storage, this sharding resolves the

problem using horizontal scaling. In this horizontal scaling,

the data is stored across different servers and the main

advantage of it is increase in performance. A MongoDB

cluster is made of one or more shards, where each shard

node is responsible for storing the actual data. Each shard

consists of either one node or a replicated node which just

holds data for that shard. Read and write queries are routed

to the appropriate shard [2]. This process and horizontal

scaling are not available in SQL.

3.1.3 Replication

Replication provides redundancy and increases data

availability. With multiple copies of data on different

database servers, replication provides a level of fault

tolerance against the loss of a single database server [3].

MongoDB has its replica set- which contains ‘mongod’

processes with same data. This replication is very much

needed for backup and for disaster recover, hence gives the

data ready all the time and it does not consume time for

replication. Replication provides the synchronization in

multiple servers.

3.1.4 CAP Theorem

MongoDB follows CAP theorem, which means that data will

be consistence, available and partition tolerant across the

distributed systems. Consistency deal with providing same

data to all the clients after the execution of certain

operations. Availability - MongoDB keeps the data available

all the time, with no downtime. Partition Tolerance - System

works continuously even if there is no communication

between the servers or in case of the message fail. To

maintain all three properties is most important factor rather

than the ACID properties of SQL. The fig-2 briefs out the

reasons why MongoDB can be used.

4. MAPPING OF MONGODB WITH SQL SERVER

The mapping of MongoDB with SQL Server is shown in fig 3.

The SQL database have multiple tables in it whereas the

MongoDB have collections in it. MongoDB is mainly a

document-based database, rather than the rows and

columns it contains fields of the documents. The Group by

operation of SQL is made by simple Aggregation in

MongoDB.

Fig-2: Reason for MongoDB

The following example briefs the simple MongoDB

document.

{

id: ObjectID (“5e0c3356017f45dfbf7b199d”)

DepartmentName: “cardiac”

https://docs.mongodb.com/manual/reference/glossary/#term-high-availability
https://docs.mongodb.com/manual/reference/glossary/#term-high-availability

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2334

PatientAdmit_date: 03:01:2019;

}

The above examples describe the Hospital database,

containing a document with fields DepartmentName,

PatientAdmit_date, which stores the data in json format and

an id which is generated automatically.

Fig-3: Mapping of MongoDB with SQL

4.1 Comparison with respect to schema

4.1.1 For CREATE Command

SQL:
CREATE TABLE Department (id varchar(30) PRIMARY KEY,
DepartmentName varchar(30), PatientAdmit_date date);

MongoDB:
db.Department.insert({id:246, DepartmentName:”cardiac”,
PatientAdmit_date: 21:11:2018})

4.1.2 For DROP Command

SQL:
DROP TABLE Department;

MongoDB:
db. Department.drop()

4.1.3 For DELETE Command

SQL:

DELETE FROM Department WHERE

DepartmentName=”cardiac”;

MongoDB:

db.Department.remove({DepartmentName=”cardiac”})

4.1.4 For INSERT Command

SQL:
INSERT INTO Department (id, department_name,
patient_admitDate)VALUES(842,“ nephrology”, 06:05:2011);

MongoDB:
db.Department.insert({id:843,department_Name:”nephrolog
y”,patient_admitDate : 06:05:2011})

4.1.5 For SELECT Command

SQL: SELECT * FROM Department;

MongoDB: db.find.Department ()

5. EXPERIMENT

5.1 System Specifications:

The experiment is conducted with the following system

specifications:

 Operating System: windows 10, 64 bits
 Processor: intel core i5
 RAM: 8GB

5.2 Experimental Details

The experiment is conducted in both MySQL and MongoDB.

Both the database has same number of tables or collection

and same number of columns or fields in MySQL and

MongoDB respectively.

5.2.1 Insertion Operation

Initially created a Hospital Database which contains the

tables or collection as follows:

Hospital table or collection: id, name, department_name,

patient_name, patient_admitDate;

Department table or collection: id, department_name,

patient_admitDate;

Patient table or collection: id, Fname, Lname, age, hospital,

patient_admitDate;

This hospital database which includes the foreign keys and

primary keys in it. Example: department_name is the

primary key in department table or collection and it is a

foreign key in hospital table. The database is inserted with

10,000 records of patients and have designed a simple UI

using c# for interaction. The timings are recorded using

microtime function. The results after the insertion of both

shows that in MySQL, it is inserted in 480sec and in

MongoDB, it takes 0.40 seconds. The fig-4 shows the

graphical representation of insertion operation.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2335

Fig-4: Insert Operation

5.2.2 Query Operation

The query which is used here is to retrieve all the patient’s

details of particular department on particular date. The

MySQL uses the join operation on patient and department

table to retrieve the data. The query operation takes 0.0045

seconds in MongoDB which is negligible. The results are

shown in fig-5.

Fig-5: Query Operation

5.2.3 Delete Operation

As the results observed in insertion and selection operation,

the deletion also operates faster than MySQL. The deletion of

all the patient’s on specified date they admitted is as shown

in the fig-6, which represents that time taken to delete

patients record in MySQL is 0.4873 seconds and time taken

in MongoDB is 0.00195 seconds.

Fig-6: Delete Operation

By comparing overall results, it clearly shows that MongoDB

generates more faster results than MySQL. MongoDB is the

choice for users who need a less rigid database structure.

MongoDB could be a good solution for larger data sets in

which the schema is constantly changing or in the case that

queries performed will be less complex [5].

6. CONCLUSIONS

MongoDB is the most popular among the NoSQL databases.

It is a great tool for building data warehouses, especially

because of its ability to fully utilize so called “shared-nothing

cluster architecture.” The flexible and scalable nature of

MongoDB provides the user to quick change of their

databases from rational DB’s. There is no need of mapping of

application objects to database objects which makes the user

friendly.

The only limitation of this MongoDB is the data size is

limited upto 16 mb per document but this problem can be

easily solved by using MongoDB’s GridFS, which allows us to

load more than 16mb of data in each document. MongoDB is

best suitable for hierarchical data storage which is not

suitable for SQL. Thus, the NoSQL database, MongoDB is best

suitable for massive data storage.

REFERENCES

[1]. Shaikh, N. F., Jadhav, A., Raina, C., Nagoshe, G., & Kale, S.
(2018). Data Migration From SQL To Mongodb. HELIX, 8(5),
3701-3704.

[2]. Khan, S., & Mane, V. (2013). SQL support over MongoDB
using metadata. International Journal of Scientific and
Research Publications, 3(10), 1-5.

[3]. MongoDB https://www.mongodb.com./

[4]. Győrödi, C., Győrödi, R., Pecherle, G., & Olah, A. (2015,
June). A comparative study: MongoDB vs. MySQL. In 2015
13th International Conference on Engineering of Modern
Electric Systems (EMES) (pp. 1-6). IEEE.

[5]. Parker, Z., Poe, S., & Vrbsky, S. V. (2013, April).
Comparing nosql mongodb to an sql db. In Proceedings of
the 51st ACM Southeast Conference (pp. 1-6).

[6]. MongoDB Documentation https://docs.mongodb.com./

[7]. Aboutorabi, S. H., Rezapour, M., Moradi, M., & Ghadiri, N.
(2015, August). Performance evaluation of SQL and
MongoDB databases for big e-commerce data. In 2015
International Symposium on Computer Science and Software
Engineering (CSSE) (pp. 1-7). IEEE.

https://www.mongodb.com./
https://docs.mongodb.com./

