
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2083

ROBUST MALWARE DETECTION FOR INTERNET OF BATTLEFIELD

THINGS DEVICES USING DEEP EIGEN SPACE LEARNING

G. Prashanthi1, R. Roja2, G. Prasad Acharya3

 1,2Sreenidhi Institute of Science and Technology, Ghatkesar
3Associate Professor, Dept. of Electronics and Communication Engineering, Sreenidhi Institute of Science and

Technology College, Telangana, India
 ---***---
Abstract – Internet of Things (IoT) in military setting

generally consists of a diverse range of Internet-connected

devices and nodes (e.g. medical devices to wearable

combat uniforms), which are a valuable target for cyber

criminals, particularly state-sponsored or nation state

actors. A common attack vector is the use of malware. In

this paper, we present a deep learning based method to

detect Internet of Battlefield Things (IoBT) malware via

the device’s Operational Code (OpCode) sequence. We

transmute OpCodes into a vector space and apply a deep

Eigenspace learning approach to classify malicious and

bening application. We also demonstrate the robustness of

our proposed approach in malware detection and its

sustainability against junk code insertion attacks. Lastly,

we make available our malware sample on Github, which

hopefully will benefit future research efforts (e.g. for

evaluation of proposed malware detection approaches).

Key Words: malware, IoBT, Deep Eigen space.

1. INTRODUCTION

Junk Software Injection Attack is a software anti-forensic
tactic used against OpCode inspection. As the name
suggests, the introduction of junk code that involve the
incorporation of innocuous OpCode sequences that do not
run in malware, or the inclusion of instructions (e.g. NOP)
that do not necessarily make any difference in malware
operations. Junk Code Injection Technique is typically
intended to obscure the malicious OpCode sequence and
that the 'proportion' of malicious OpCodes in malware in
our suggested solution, we use affinity-based
requirements to minimize junk OpCode injection anti-
forensics. Specifically, our feature collection approach
excludes less detailed OpCodes to minimize the impact of
insertion of OpCodes garbage. To show the efficacy of our
proposed solution to Code Insertion Attack, In an
incremental manner, a specified proportion of all the
elements in the graph generated by each sample was
chosen randomly and their value increased by one. For
example, in the 4th iteration of the evaluations, 20% of the
indices in each sample graph were chosen to increase their
value by one. In addition, the probability of repeated
feature collection for simulate has been included in our
assessments and several injections of OpCode.

Incrementing Ei;j in the sample generated graph is equal
to injecting OpCodej next to OpCodei in the sample
instruction series to deceive the detection algorithm.
Algorithm 2 describes the iteration of the junk code
insertion during experiments, and this procedure should
be repeated for each iteration of the k-fold validation. In
order to demonstrate the robustness of our proposed
solution and to compare it with existing proposals, two
congruent algorithms mentioned in Section 1 are applied
to our developed dataset using Adaboost as a classification
algorithm.

1.1 OBJECTIVE OF THE PROJECT

Robust malware detection for internet of things is a
process performed by software and hardware. Input
Architecture is the method of translating a user-oriented
data definition into a computer-based program. This
architecture is necessary in order to prevent mistakes in
the data input process and to display the correct way to
the management to get the correct information from the
computerized system. This is done by designing user-
friendly data entry screens to accommodate huge data
volumes. The aim of input design is to make data entry
simpler and error-free. The data entry system is designed
in such a way that all data processing can be done. It also
offers a record screening service. When the data is
entered, it must test the authenticity of the results. Data
can be entered with the aid of a phone. Reasonable alerts
are received as appropriate so that the consumer is not
immediately in maize. The goal of the interface design is
therefore to create an interface structure that is simple to
navigate.

1.2 EXISTING SYSTEM:

Malware identification approaches may be either static or
dynamic. In contextual malware detection methods, the
program is executed in a managed environment (e.g. a
virtual machine or sandbox) to capture the functional
characteristics, such as the necessary resources, the
direction of execution, and the desired privilege, in order
to identify the program as malware or benign. Static
methods (e.g. signature-based detection, byte-based
detection, OpCode sequence identification and control
flow graph traversal) Statistically check the software code
for questionable programs. David et al have proposed
Deepsign to automatically detect malware using a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2084

signature generation process. The above generates a
dataset based on API call activity records, registry entries,
site queries, port accesses, etc., in a sandbox and
transforms records to a binary matrix. They used the
deep-seated network for classification and allegedly
achieved 98.6 percent accuracy. In another study, Pascanu
et al. suggested a method for modeling malware execution
using natural language processing. They extracted the
relevant features using a recurrent neural network to
predict future API calls. Both logistic regression and multi-
layer perceptrons were then used as a classification
module. Next API call estimation and use the history of
previous events as functionality. It has been recorded that
a true positive rate of 98.3 percent and a false positive rate
of 0.1 percent is obtained. Demme et al. investigated the
feasibility of developing a malware detector on IoT node
hardware using output counters as a learning tool and K-
Nearest Neighbor, Decision Tree and Random Forest as
classifiers. The reported accuracy rate for specific
malware families varies from 25 percent to 100 percent.
Alam et al. used Random Forest to identify malware codes
on a dataset of Internet-connected mobile apps. They run
APKs in an Android emulator and documented different
features, such as memory detail, permissions and a
network for classification, and tested their approach using
different tree sizes. Their results have shown that the ideal
classifier includes 40 trees and a mean square root of
0.0171 has been obtained.

1.3 PROPOSED SYSTEM:

In our suggested solution, we use affinity-based criteria to
minimize junk OpCode anti-forensic injection technique.
Specifically, our function collection process excludes fewer
instructive OpCodes to minimize the effects of insertion of
OpCodes garbage. To the best of our knowledge, this is the
first OpCode based deep learning method for IoT and IoBT
malware detection. We then demonstrate the robustness
of our proposed approach, against existing OpCode based
malware detection systems. We also demonstrate the
effectiveness of our proposed approach against junk-code
insertion attacks. Specifically, our proposed approach
employs a class-wise feature selection technique to
overrule less important OpCodes in order to resist junk-
code insertion attacks. Furthermore, we leverage all
elements of Eigenspace to increase detection rate and
sustainability. Finally, as a secondary contribution, we
share a normalized dataset of IoT malware and benign
applications2, which may be used by fellow researchers to
evaluate and benchmark future malware detection
approaches. On the other hand, since the proposed
method belongs to OpCode based detection category, it
could be adaptable for non-IoT platforms. IoT and IoBT
application are likely to consist of a long sequence of
OpCodes, which are instructions to be performed on
device processing unit. In order to disassemble samples,
we utilized Objdump (GNU binutils version 2.27.90) as a
disassembler to extract the OpCodes. Creating n-gram Op-
Code sequence is a common approach to classify malware

based on their disassembled codes. The number of
rudimentary features for length N is CN, where C is the
size of instruction set. It is clear that a significant increase
in N will result in feature explosion. In addition,
decreasing the size of feature increases robustness and
effectiveness of detection because ineffective features will
affect performance of the machine learning approach.

1.4 REQUIREMENTS ANALYSIS

The research included reviewing the functionality of a few
apps in order to make the program more user-friendly. To
do so, it was very important to keep the navigation from
one computer to the other well ordered and at the same
time to minimize the amount of typing that the user has to
do. In order to make the application more available, the
version of the browser had to be selected to be compliant
with the most of the browsers.

Functional Requirements

Graphical User interface with the User.

Software Requirements

For developing the application the following are the
Software Requirements:

Python

Django

Operating Systems supported

Windows 7

Windows XP

Windows 8

Technologies and Languages used to Develop

Python

Debugger and Emulator

Any Browser (Particularly Chrome)

Hardware Requirements

For developing the application the following are the
Hardware Requirements:

 Processor: Pentium IV or higher

 RAM: 256 MB

 Space on Hard Disk: minimum 512MB

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2085

2. SYSTEM DESIGN

2.1 ARCHITECTURE

2.2 ALGORITHM:

Algorithm: Junk Code Insertion Procedure
Input: Trained Classifier D, Test Samples S, Junk Code
Percentage k
Output: Predicted Class for Test Samples P
1: P = fg
2: for each sample in S do
3: W= Compute the CFG of sample based on Section 4.1
4: R = fselect k% of W’s index randomly
(Allowd uplicate indices)g
5: for each index in R do
6: Windex = Windex + 1
7: end for
8: Normalize W
9: e1; e2= 1st and 2nd eigenvectors of W
10: l1; l2= 1st and 2nd eigenvalues of W
11: P = P
S
D(e1; e2; l1; l2)
12: end for
13: return P

2.3 INPUT AND OUTPUT DESIGN

2.3.1 Input Design

The configuration of the input is the relation between
the information system and the customer. It involves
the creation of requirements and procedures for data
preparation and these measures are required to
position transaction data in a functional form for
analysis and can be accomplished by checking a
device for reading data from a written or printed
record or by making people lock the data directly
into the database. The input architecture focuses on

managing the amount of input required, reducing
errors, preventing delays, avoiding unnecessary
steps and making the process quick. The feedback is
built in such a way as to maintain protection and
ease of use while maintaining.

2.3.2 Output Design

A standard performance is one that meets the
requirements of the end user and communicates the
details clearly. In any system, the effects of the processing
are transmitted by outputs to users and to other systems.
In the production process, it is decided how the material is
to be transferred for immediate use, as well as the output
of the hard copy. This is the most critical and clear source
information to the customer. Effective and insightful
performance architecture strengthens the interaction of
the device and help users make decisions.

 Designing the output of the machine should
continue in an coordinated, well thought-out
manner; the correct output should be produced
thus ensuring that every output feature is
configured so that the program can be used
conveniently and efficiently. When evaluating the
program output configuration, they will define the
unique performance required to satisfy the
requirements.

 Pick the methods to display the details.
 Build a text, study or other format containing

information generated by the device.

2.4 DEEP EIGENSPACE LEARNING AND DEEP

LEARNING

2.4.1Deep Eigenspace Learning

A prevalent data type in machine learning is graphs as a

complex data structure for representing relationships

between vertices. There are very few algorithms for data

mining and deep learning that consider a graph as an

input. A logical alternative is therefore to integrate a graph

into a vector space. Graph embedding is essentially a

bridge between recognizing statistical patterns and graph

mining. Eigenvectors and individual values are two

characteristic elements in the continuum of the graph,

which could turn the adjacency matrix of a graph linearly

into a vector space. It denotes ownvectors, uniqueness

values and the adjacency or affinity matrix of a line. In this

article, for the learning process, we employ a sub-set of v

and ÿ.

 Av = λv
 To obtain substantive knowledge of the structure of

CGFs generated, a graph is produced which illustrates the
cumulative of all samples in our dataset. The figure below

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2086

consists of two major diagonal building blocks (marked
with red boundaries), indicating that the samples contain
two main data distributions. Based on the spectrum theory
of the graph, there should be an explicit owngap in the
proper values of the matrix in this case, and it depicts the
presence of a gap between π2 and πk(k>2).

2.4.2 Deep Learning

Deep Learning or Deep structural learning is an evolved
version of Neural Network. There are few or several basic,
interconnected nodes called neurons in a standard NN. In
a few layers, NN's neurons are arranged, namely: an input
layer, several unseen layers and an output layer. DL as a
"upgraded" NN phenomenon, focuses on deeper
understanding of the data structure by focusing on the
strengths and functionalities of the hidden layer. Recently,
deep learning has been successfully applied to tackle
problems across a range of applications, including speech
recognition and machine vision. DL types, such as
Convolutional Networks, Limited Boltzmann Machines and
Sparse Coding.

2.5 MODULES:

There are three modules can be divided here for this
project they are listed as below

• User Activity
• Malware Deduction
• Junk Code Insertion Attacks

From the above three modules, project is implemented.
Bag of discriminative words are achieved

2.5.1 User Activity:

User managing IOT(Internet Thought Example for Nest
Smart House, Kisi Smart Lock, Canary Smart Protection
Network, DHL's IoT Tracking and Monitoring Program,
Cisco's Wired Warehouse, ProGlove 's Smart Glove, Kohler
Verdera Smart Mirror) for a variety of occasions. If some
computer targets any unauthorized malware apps, this
malware contains personal data per user hazard, bank
account numbers and any kind of personal documents are
hacking possible.

2.5.2 Malware Deduction

Users scan any connection in particular, not all network
traffic data created by malicious applications equate to
malicious content. Many malwares take the form of
repackaged benign apps; thus, malware may also include
the basic functionality of the benign device. Subsequently,
the network traffic that they produce can be described by
mixed benevolent and malicious network traffic. We're
looking at the traffic flow header using N-gram method
from the natural language processing.

2.5.3 Junk Code Insertion Attacks:

Junk Code Injection Attack is a software anti-forensic
tactic used against OpCode inspection. As the name
suggests, the introduction of junk code can involve the
incorporation of innocuous OpCode sequences that do not
run in malware, or the inclusion of instructions (e.g. NOP)
that do not necessarily make any difference in malware
operations. Junk Code Injection Technique is typically
designed to obscure the malicious OpCode sequence and
reduce the proportion of malicious OpCodes in a malware.

3. CONCLUSION:

In the near future, IoT, in particular IoBT, will become
increasingly relevant. No malware mitigation approach
would be foolproof, but we can be confident of a relentless
battle between cyber attackers and cyber defenders. It is
therefore critical that we maintain constant pressure on
the actors at risk. In this article, we introduced a class-
wise IoT and IoBT malware identification method. In this
paper, we presented an IoT and IoBT malware detection
approach based on the class-wise selection of the Op-
Codes sequence as a classification task feature. A graph of
selected features has been created for each sample and a
deep self-space learning approach has been used for
malware detection. Our tests showed the robustness of
our malware detection strategy at an accuracy rate of
98.37% and a precision rate of 98.59%, as well as the
potential to prevent junk code intrusion attacks.

REFERENCES:

[1] E. Bertino, K.-K. R. Choo, D. Georgakopolous, and S.
Nepal, “Internet of things (iot): Smart and secure service
delivery,” ACM Transactions on Internet Technology, vol.
16, no. 4, p. Article No. 22, 2016.
[2] X. Li, J. Niu, S. Kumari, F. Wu, A. K. Sangaiah, and K.-K. R.
Choo, “A three-factor anonymous authentication scheme
for wireless sensor networks in internet of things
environments,” Journal of Network and Computer
Applications, 2017.
[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
“Internet of things (iot): A vision, architectural elements,
and future directions,” Future generation computer
systems, vol. 29, no. 7, pp. 1645– 1660, 2013.
[4] F. Leu, C. Ko, I. You, K.-K. R. Choo, and C.-L. Ho, “A
smartphonebased wearable sensors for monitoring real-
time physiological data,” Computers & Electrical
Engineering, 2017.

[5] M.Roopaei, P. Rad, and K.-K. R. Choo, “Cloud of things in
smart agriculture: Intelligent irrigation monitoring by
thermal imaging,” IEEE Cloud Computing, vol. 4, no. 1, pp.
10–15, 2017.
[6] X. Li, J. Niu, S. Kumari, F. Wu, and K.-K. R. Choo, “A
robust biometrics based three-factor authentication
scheme for global mobility networks in smart city,” Future
Generation Computer Systems, 2017.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2087

[7] L. Atzori, A. Iera, and G. Morabito, “The internet of
things: A survey,” Computer networks, vol. 54, no. 15, pp.
2787–2805, 2010.

BIOGRAPHIES

G.Prashanthi
Studying at Sreendhi Institute of
Science and Technology, Dept. of
Electronics and Communication
Engineering

 R.Roja,
Studying at Sreendhi Institute of
Science and Technology, Dept. of
Electronics and Communication
Engineering

