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Abstract - People have a brilliant capacity to perceive 
freehand sketch drawings in spite of their theoretical and 
meager structures. Understanding freehand sketches with 
automated methods is a challenging task due to the diversity 
and abstract compositions of these sketches. In this project, we 
aim to develop an efficient freehand sketch recognition 
scheme, which is based on Convolutional Neural Networks 
(CNNs). Specifically, we seek to create a Keras model to 
classify sketches using Google's 'Quick, Draw!' dataset, which 
contains more than 50 million drawings across 345 categories. 
Further, we aim to integrate a custom model to an Android 
app using TensorFlow Lite. Such a system will be of great 
value to a variety of applications, such as human-computer 
interaction, sketch-based search, game design, and education. 
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1. INTRODUCTION 
 
In November 2016, Google released an online game titled 
Quick, Draw! that moves players to draw a given object in 
under 20 seconds. However, this is no ordinary game; while 
the user is drawing, an advanced neural network attempts to 
guess the category of the object, and its predictions evolve as 
the user adds more and more detail. Beyond just the scope of 
Quick, Draw!, the ability to recognize and classify hand-
drawn doodles has important implications for the 
development of artificial intelligence at large. For example, 
research in computer vision and pattern recognition, 
especially in subfields such as Optical Character Recognition 
(OCR), would benefit greatly from the advent of a robust 
classifier on high noise datasets. For the purposes of this 
project, we choose to focus on classification of the finished 
doodles in their entirety. While a simpler premise than that 
of the original game’s, this task remains difficult due to the 
large number of categories (345), wide variation of doodles 
within a category, and confusing similarity between doodles 
across other categories. Thus, we create a multi-class 
classifier whose input is a Quick, Draw! doodle and whose 
output is the predicted category for the depicted object [1]. 

2. LITERATURE SURVEY 
 
A. Quick, Draw! Doodle Recognition: The paper was 
developed by the author Kristine Guo, James WoMa, and Eric 
Xu. In this paper, a multi-class classifier was built to assign 
hand-drawn doodles from Google’s online game Quick, 
Draw! into 345 unique categories. Multiple variations of k-

nearest neighbors and a convolutional neural network were 
implemented and compared which achieved 35% accuracy 
and 60% accuracy, respectively [1]. 

B. Image Classification with Deep Learning and 
Comparison between Different Convolutional Neural 
Network Structures using TensorFlow and Keras: The 
paper was developed by the author Karan Chauhan, and 
Shrwan Ram. In this paper, a large number of different 
images, which contain two types of animals, namely cat and 
dog are used for image classification. Four different 
structures of CNN are compared on CPU systems, with four 
different combinations of classifiers and activation functions. 
For Binary image classification, combination of sigmoid 
classifier and Relu activation function gives higher 
classification accuracy than any other combination of 
classifier and activation function [2]. 

C. Feature-level fusion of deep convolutional neural 
networks for sketch recognition on smartphones: The 
paper was developed by the author E. Boyaci, and M. Sert. In 
this paper, feature-level fusion is implemented that use deep 
convolutional neural networks (CNNs) for recognizing hand-
free sketches and develop a sketch recognition application 
for smartphones based on client-server application 
architecture. Results on TU-Berlin hands-free sketch 
benchmark dataset show that, feature-level fusion scheme 
achieves a recognition accuracy of 69.175%. This outcome is 
promising when contrasted and the human acknowledgment 
exactness of 73.1% on the equivalent dataset [3]. 

D. Free-hand Sketch Recognition Classification: The paper 
was developed by the author Wayne Lu, and Elizabeth Tran. 
In this paper, a publicly available dataset of 20,000 sketches 
across 250 classes from Eitz et al. is used, Convolutional 
neural networks (CNNs) is applied in order to improve 
performance to increase the recognition accuracy on 
sketches drawn by different people. The effects of several 
hyperparameters on overall performance are analyzed using 
a residual network (ResNet) approach [4]. 

E. Hand Drawn Sketch Classification Using Convolutional 
Neural Networks: The paper was developed by the author 
Habibollah Agh Atabay. In this paper, the accuracy of sketch 
image classification is improved by training a few deep 
CNNs. The size of inputs in the currently used architectures 
of CNNs is greater than 200×200 pixels which has limited the 
accuracy of classification. Input is given in the form of tiny 
images, thus the architecture of CNNs are simplified and thus 
be trained in a reasonable time, in CPU mode and increase 
the speed of training [5]. 
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Table -1: Summary of Literature Survey 
 

Literature Observations 

Kristine Guo et 
al. 2018 [1] 

Quick Draw! dataset contains 
numerous preprocessed images 
of various categories that will 
help in making an efficient 
model. 

Karan Chauhan 
et al. 2018 [2] 

The comparison between 
different neural networks will 
help in the optimal selection of 
the neural network that will be 
used to train the model with the 
help of TensorFlow and Keras. 

E. Boyaci et al. 
2017 [3] 

Understanding various datasets 
for the implementation of the 
project. 

Wayne Lu et al. 
2017 [4] 

Better understanding of CNN 
will help in an efficient model 
creation. 

Habibollah Agh 
Atabay et al. 
2016 [5] 

Studying CNN on different 

datasets will help in analyzing 
the model thus resulting in 
better outcomes. 

 
3. PROPOSED WORK 
 
We have proposed a Convolutional Neural Network 

(ConvNet/CNN) based sketch recognition model which is a 

Deep Learning algorithm which can take in an input image, 

assign importance (learnable weights and biases) to various 

aspects/objects in the image to differentiate one from the 

other. The pre-processing required in a ConvNet is a lot 

lower when contrasted with other classification algorithms. 

In this project, we explore four different convolutional 

network architectures. The basic architecture consists of an 

initial 7x7 convolutional layer. This layer is then followed by 

a series of 12 3x3 residual units, for a total of 25 

convolutional layers (not including layers used for residual 

projection). Every third residual unit, the feature map size is 

halved by increasing stride while the number of filters is 

doubled. At the end of the network, global average pooling is 

used and followed by a fully connected layer to output logits 

for softmax cross-entropy loss. Dropout is applied on 1) the 

initial input, 2) every third residual unit, and 3) before the 

fully connected layer [6][7]. 

 

3.1 System Architecture 
 
We implement a convolutional neural network (CNN), a 
state-of-the-art model known for being able to recognize and 
quickly learn local features within an image. For a 28 × 28 × 
1 doodle, we first run the image through two convolutional 
filters. Furthermore, we add zero padding border around the 
image so that the resulting outputs have the same width and 
height. The output then goes through a max pooling layer 
with a kernel size of 2 × 2. Following this, we flatten the 
tensor and feed the result through two fully-connected or 
dense layers. Each layer uses the ReLu activation function as 
well as dropout. The output then goes through one more 
affine transformation before we apply softmax to generate 
probabilities for each class. 

Layers used to build the model architecture: Input, Dense, 
Dropout, Flatten, Conv2D, MaxPooling2D. 

The system architecture is given in Figure 1. Each block is 
described in this Section. 

 
Figure 1: Proposed system architecture layout 

 

3.1.1 Convolutional Neural Network 
 

CNN image classifications take an input image, and classify it 
under certain categories after processing it. Computers see 
an input image in the form of an array of pixels. It depends 
on the image resolution. It will see h x w x d (h = Height, w = 
Width, d = Dimension) based on the image resolution. For 
instance, an image of 4 x 4 x 1 array of matrix of grayscale 
image and an image of 6 x 6 x 3 array of matrix of RGB (3 
refers to RGB values). 
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Figure 2: Array of RGB matrix 

Each input image will pass it through a series of convolution 
layers with filters (kernels), pooling, fully connected layers 
and then apply Softmax function to classify an object with 
probabilistic values between 0 and 1. The complete flow of 
CNN to process an input image and classify the objects is 
explained in the below figure. 

 

Figure 3: Neural network with many convolutional layers 

 

3.1.2 Convolution Layer 
 

Convolution layer extracts features from an input image. The 
relationship is preserved by Convolution between pixels by 
learning image features using small squares of input data. 
Two inputs such as image matrix and a filter or kernel are 
taken by a mathematical operation. 

 
Figure 4: Image matrix multiplies kernel/filter matrix 

 

3.1.3 Strides 
 

Stride is the number of pixel shifts over the input matrix. We 
move the filters to 1 pixel at a time when the stride is 1. We 
move the filters to 2 pixels at a time when the stride is 2 and 
so on. The convolution would work with a stride of 2 as it is 
shown in the below figure. 

 

Figure 5: Stride of 2 pixels. 

 

3.1.4 Padding 
 

Sometimes the filter does not fit perfectly with the input 
image. We have two options: 

1. For the picture to fit, pad it with zeros (zero-
padding). 

2. The part of the image can be dropped where the 
filter did not fit. This is called valid padding which 
keeps only the valid part of the image. 

 

3.1.5 Non Linearity (ReLU) 
 

ReLU - Rectified Linear Unit for a non-linear operation. The 
output is 

ƒ(x) = max(0,x). 

ReLU’s purpose is to present non-linearity in our ConvNet. 
As, the real world data would want our ConvNet to learn 
would be non-negative linear values. 

 
Figure 6: ReLU operation 

 

3.1.6 Pooling Layer 
 

When the images are too large the number of parameters 
would be reduced by the Pooling layers section. Spatial 
pooling is also referred to as subsampling or downsampling 
which reduces the dimensionality of each map but retains 
the important information. 

Types of Spatial pooling: 

● Max Pooling 
● Average Pooling 
● Sum Pooling 

The largest element is then taken by Max pooling from the 
rectified feature map. The average pooling can also be taken 
by taking the largest element. Sum pooling is the sum of all 
elements in the feature map. 
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Figure 7: Max Pooling 

 

3.1.7 Fully Connected Layer 
 

The layer we call the FC layer, we flattened our matrix into 
vector and feed it into a fully connected layer like neural 
network. 

 
Figure 8: After pooling layer, flattened as FC layer 

 

Feature map matrix will be converted as vector (x1, x2, x3, 
…) in the above diagram. We combined these features 
together to create a model, with the fully connected layers. 
Finally, we classify the outputs using an activation function 
such as softmax or sigmoid. 

 

 
Figure 9: Complete CNN architecture 

 
4. PERFORMANCE AND EVALUATION 
 
The implementation detail is given in this section. 

4.1 Dataset and Parameters 
 
Google publicly released a Quick, Draw! dataset containing 
over 50 million images across 345 categories. There are 
multiple different representations for the images. One 
dataset represents each drawing as a series of line vectors, 
and another contains each image in a 28x28 grayscale 
matrix. We use the latter version of the dataset because we 

focus on classification of the entire doodle in this project. We 
treat each 28x28 pixel picture as a 784-dimensional vector. 

 
Figure 10: Sample doodles of a sock, elbow, and carrot 

(left to right) from the training dataset 

To test our models, we split the data into two different folds: 
80% for training and 20% for testing. To reduce 
computation time and storage of the data, we decided to 
create a smaller subset of the original dataset by randomly 
sampling 10% of the drawings from each category. As a 
result, we obtain approximately 4,000 examples for the 
training set and 1,000 examples for the testing set. 
 
While raw accuracy is a good measure of a model’s 
performance, it penalizes harshly for an incorrect prediction 
(wrong predictions receive 0 points and right predictions 
receive 1 point). Since we have so many categories, including 
some that are extremely similar such as “cake” and “birthday 
cake”, we evaluate our methods not only with raw accuracy 
but also with a scoring metric that is more lenient of 
incorrect predictions. We use the top_k_categorical_accucary 
metric provided by Keras which calculates the top-k 
categorical accuracy rate, i.e. success when the target class is 
within the top-k predictions provided [1]. 
 

4.2 Evaluation Parameters 
 
While raw accuracy is a good measure of a model’s 
performance, it penalizes harshly for an incorrect prediction 
(wrong predictions receive 0 points and right predictions 
receive 1 point). Since we have so many categories, including 
some that are extremely similar such as “cake” and “birthday 
cake”, we evaluate our methods not only with raw accuracy 
but also with a scoring metric that is more lenient of 
incorrect predictions. We use the top_k_categorical_accucary 
metric provided by Keras which calculates the top-k 
categorical accuracy rate, i.e. success when the target class is 
within the top-k predictions provided. 
 

4.3 Performance Evaluation 
 
To achieve the best performance for the CNN model, we 
tuned various hyperparameters including the number of 
units in each dense layer, dropout rate, and learning rate. 
Overall, we found that the model producing the best 
prediction had two dense layers with 512 and 256 units with 
each layer having a dropout rate of 0.2. Furthermore, we 
trained our model with a learning rate of 0.001 and batch 
size of 256 across 10 epochs. 
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Fig 11: Training Accuracy 

As seen from figure, the end architecture fits the data well 
as the validation accuracy has more or less converged 
after the 6th epoch. 

Furthermore, following were the accuracies achieved on 
the testing dataset: 1. Final accuracy: 65.57% 2. top-3 
accuracy: 82.71% 

5. RESULT 
 
Below is the demonstration of the Sketch Recognition 
application that was built using the model.  

  
Fig 12: Sketch Recognition App 

6. CONCLUSION 
 
We have presented our CNN architecture for freehand sketch 
recognition. The different pooling layers, strides, padding, 
ReLu have been explained. The different hybrid approaches 
have also been described. The comparative study of various 
techniques mentioned above is presented in this report. The 
hybrid approach is proposed with a combination of different 
hybrid strategies for the development of an application with 
the help of convolutional neural networks by using Keras 
model, TensorFlow lite. Evaluation parameters which are 

used to evaluate the performance and accuracy of the system 
are described within the report. The standard dataset or 
variable inputs are defined that may be used in an 
experiment for this system. The two datasets identified for 
the experiments are ‘Quick, Draw!’ and ‘TU-Berlin sketch’. 
The learned sketch feature representation could benefit 
other sketch-related applications such as sketch-based 
image retrieval and automatic sketch synthesis, which could 
be interesting venues for future work. 
 
We would like to experiment with advanced CNN 
architectures such as VGG-Net and ResNet, which have 
already reached state-of-the-art levels of image classification 
performance, although not for sketches in particular. 
Additionally, we have only used approximately 10% of the 
total Quick, Draw! dataset, and we believe training our 
models on the complete dataset would improve accuracy. 
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