
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1670

An Analysis of Machine Learning Methods for Ranking in

Recommendation Systems

Shubham Milind Phal1, Smriti Srivastava2

1Student, Dept. of Computer Science & Engineering, RV College of Engineering, Karnataka, India
2Assistant Professor, Dept. of Computer Science & Engineering, RV College of Engineering, Karnataka, India

---***---
Abstract - Recommendation systems are an integral part of
any e-commerce business. Several prominent e-commerce
websites such as Amazon, Netflix etc use recommendation
systems in order to enhance the quality of user experience by
providing intuitive and personalized recommendations.
Ranking of items is an important step in providing relevant
recommendations. Primarily Machine-Learned Ranking
(MLR) methods have been used in a multitude of information
retrieval problems such as online-advertising, document
retrieval etc. The ranking function is generally learned using
either a Pointwise, Pairwise or a Listwise approach. In this
work we analyze the efficacy of several prominent machine
learning methods that are used to rank items. We apply these
methods on the popular open-source MovieLens 100K Dataset
and summarize the results.

Key Words: Content Based Filtering, Collaborative
Filtering, Learning to rank, Normalized Discounted
Cumulative Gain (NDCG), Gradient Boosting, AdaBoost,
Light GBM, XGBoost, Machine Learning

1. INTRODUCTION

Recommendation systems serve as the forefront of many e-
commerce businesses. Their ability to learn user preferences
by monitoring user-activity and studying user-behaviour has
been exploited in marketing products to interested users as
well as targeted cross-selling.

1.1 Ranking in Recommendation Systems

Content based filtering [1] and Collaborative filtering [2] are
the 2 most commonly used approaches in the design of a
recommendation system. A Content Based filtering approach
recommends products to users which are similar to the items
that they have indicated their interest in, or have bought in
the past. The similarity between products can be measured
using various metrics such as the Euclidean distance, cosine
similarity matrix, Pearson’s coefficient of correlation etc.
However a major limitation of this approach of
recommending is that the recommendations are limited to
those products which are similar to the products the user has
already interacted with, in the past. This implies that these
methods rely heavily on analyzing user-activity for providing
recommendations. As a result these methods are unable to
recommend new products to users which is a very important
aspect of cross-selling. In order to recommend new products
to users it is important to understand user-behaviour in

addition user-activity. Collaborative filtering seeks to solve
this problem by either building a user-profile or an item-
profile. In general the collaborative filtering approach starts
off with a common user-item space and matrix factorization
is applied to generate either a user-user matrix or an item-
item matrix. For instance the user based collaborative
filtering algorithm attempts to find similarity between users
by looking at the pattern of their interactions across items. It
then uses this information to recommend new items not
bought by the user but bought by similar users. The
Collaborative filtering approach suffers from the cold start
problem, wherein the addition of a new user or new item to
the dataset can cause the system to provide irrelevant
recommendations. This is because the system does not have
any history of the user and hence does not know the user
behaviour, or because the new item does not have any user
interaction on it which is very important in item based
collaborative filtering.

In addition to providing product recommendations to users a
good Recommender System also needs to rank the products
based on some scoring criterion. The similarity (or
correlation) score calculated either during content based
filtering or collaborative filtering may not always be the best
indicator of the fact that the user will buy the item.

For instance, an e-commerce website selling movies, needs to
provide a ranked list of movie recommendations to its
customers such that the movie having the highest buy
probability (probability that the movie shown will be bought
by customer) is displayed on the top. While providing the
movie recommendations, the recommender system may
either use a collaborative or a content based filtering
approach to analyze user preferences. However when
displaying the recommendations to the users, the system
needs to rank these recommendations. Different features may
be relevant for the task of recommending and for that of
ranking. For example when considering similarity between
new movies and the movies previously bought by the
customer, features such as genre, production studio, ratings
etc may be more relevant. Therefore movies having high
degree of similarity on these features are most likely to
receive a higher correlation score and therefore would be the
top recommendations provided by a content based or
collaborative filtering strategy. But when we consider the
buy probability of these movies, other features such as price,
release date etc may be more important indicators. Intuitively
it can be easily understood that if a movie is new or if the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1671

movie price is low there is a higher probability that a
customer would buy the movie Therefore although the
movies recommended by the system had a high correlation
with the user-preferences they may not eventually be bought
by the customer. Thus a naive approach of ranking movie
recommendations based on their similarity score as
determined by the similarity metric may not necessarily be
the most optimal. Therefore there is a need to develop a
ranking function which can learn to rank recommendations.

1.2 Literature Review

A study-of the state of the art reveals the existence of
several approaches to learning the ranking function. In the
Pointwise (or item-wise) learning [3] approach a single
record is looked at a time in the loss function. In the Pairwise
learning [4] approach a pair of records are looked at a time
in the loss function and the goal is to come up with an
optimal ordering for the pairs that minimizes the number of
inversions in ranking. Listwise learning[5] approaches look
at the entire list of records at a time and try to come up with
an optimal ordering for it. As such several ‘Learning to Rank’
(LTR) neural network models have been developed to
exploit one of the above 3 methods for learning. For instance
RankNet [6] uses neural nets to minimize the number of
inversions (incorrect orderings) in ranking. Specifically
RankNet attempts to optimize its cost function using
Stocashtic Gradient Descent (SGD). LamdaRank[7] optimizes
RankNet training using only the gradients associated with
the cost instead of the costs and performs better than
RankNet in terms of both speed and accuracy.
LamdaMART[8-9] uses gradient boosted trees for optimizing
the cost function derived from LamdaRank and is found to
perform better than both LamdaRank and RankNet. Several
other specialized models also exist but a detailed study of
each of them is out of scope of this work.

2. LEARNING TO RANK RECOMMENDATIONS
In this section we analyze popular machine learning

methods that have traditionally been used for classification
but can also serve as powerful alternatives to the specialized
neural network based LTR methods. In this work we
specifically focus on the Pointwise learning approach for
learning the ranking function.

2.1 Dataset
The MovieLens 100K Dataset[10] is a popular open-source
dataset that has been widely used as a benchmark dataset in
the development of several recommender systems. It
contains 100,000 ratings (ranging from 1 to 5) given by 1000
users on 1700 movies. Apart from this the Dataset also
provides information about movie-specific features such as
genre(18 classes), release date etc. This Dataset however
misses some features of user-interaction necessary for
learning a ranking function. Therefore we simulate these
synthetic features for the purpose of our experiment and use
these features to generate synthetic user-interaction data.
These simulations are designed to replicate a real world

scenario wherein users interact with the product
recommendations provided by an e-commerce website (in
our case movies).

2.2 Data Preparation
Apart from the movie-specific features provided in the
dataset for each movie such as genre, release date, url etc we
append 2 additional features to each movie namely
‘average_rating’ and ‘num_of_ratings’. These are obtained by
grouping the ratings data by ‘movie_id’ and taking the mean
and count of the ratings for each group respectively. The cost
of a movie is an important factor that customers consider
before buying a movie. The dataset however does not
provide a ‘movie_price’ feature. Therefore we simulate a
synthetic feature ‘movie_price’ for each movie. Intuitively
one can say that the price of a movie will be relative to the
age of a movie and its ‘average_rating’. Therefore we
calculate the relative ‘movie_price’ of a movie by calculating
the ‘normalized_rating’ (relative rating) and
‘normalized_age’(relative age) as shown in equation 1

Eq -1: Formula to calculate ‘movie_price’

Before simulating the synthetic user-interaction data we
simulate another synthetic feature ‘buy_prob’ i.e the
probability that a movie recommended will be bought by the
user. Intuitively we can consider the ‘buy_prob’ of a movie to
be linearly dependent on the ‘movie_price’. We calculate the
‘buy_prob’ of a movie as shown in the equation 2

Eq -2: Formula to calculate ‘buy_prob’

Thus according to the equation the movie with the least
price has the highest probability of being bought by the
customer. The histogram distribution of all the features is
illustrated in Fig 1

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1672

Fig 1: Histogram distribution of features

We use the ‘buy_prob’ feature to simulate the synthetic user-
interaction data. Specifically for the Pointwise learning
approach we are interested in user-interaction data of the
type as elucidated in Table 1.

CustomerID MovieID Buy outcome

customer_1 movie_1 0 0

customer_1 movie_2 0 0

customer_1 movie_3 1 1

customer_2 movie_2 0 0

customer_2 movie_3 1 1

Table 1 User-Interaction Data (Pointwise)

This data can be interpreted as customer_1 was
recommended the movies, movie_1, movie_2 and movie_3
and decided to buy movie_3. Similarly customer_2 was
recommended the movies movie_2 & movie_3 and decided to
buy movie_3. As this is a Pointwise learning approach the
outcome is a replica of whether the customer decided to buy
a recommended movie or not.

In order to simulate these user interactions we use the
Pointwise event generator pseudo code as shown in Fig 2.
We simulate these events for 1000 users considering that
each user interacted with 20 random movies(or
recommended via collaborative/content based filtering) on
an average.

Fig -2: Pseudo code for Pointwise user event generation

The user interaction event distribution as a function of
‘movie_price’ that is obtained as a result of using the above
pseudo code for simulation is illustrated in Fig 3. From the
figure it is clear that the number of positive events (buy) are
more when the price is less and the number of negative
events (not buy) are more when the price is higher.

Fig -3: User-interaction event distribution simulation

The getRecommendedMovies function(Fig 2) returns a list of
recommended movies for a customer using either one of
collaborative or content based filtering strategies. Due to the
availability of abundance of literature covering these
approaches on MovieLens 100K we choose to omit the
implementation of this function in our work.

2.3 Ranking using Machine Learning
The prepared data is split into training and testing splits.
80% of the data is used for training and 20% of the data is
used for testing. We feed the input features and the outcome
variable into various machine learning models and evaluate
them via the precision, recall and accuracy metric. We obtain
the optimal hyper-parameters for each model using the grid
search technique [11]. In order to evaluate the ranking
performed by the machine learning models we use the
popular Normalized Discounted Cumulative Gain (NDCG)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1673

score [12] metric by taking the ‘buy_prob’ as the ground
truth measure of relevance.

2.4 Results and Analysis
Illustrated in Table 2 is the performance of various machine
learning models using the pointwise approach for learning
the ranking function. The enhanced Gradient Boosting
methods namely Adaptive Boosting (AdaBoost)[13], Light
Gradient Boosting Machine (Light GBM)[14] and eXtreme
Gradient Boosting (XGBoost) [15] perform considerably

better than other methods in ranking as indicated by their
high NDCG scores. This can be attributed to their ability to
perform optimization in the function space rather than the
parameter space. That is the boosted trees are obtained by
optimizing a custom objective function (such as NDCG)
rather than a loss function which offers less control. It is also
observed that logistic regression is a better candidate
algorithm for ranking than an ensemble learning method
such as random forest or a naive neural network such as the
Multi-layer Perceptron.

Model Name Train
Precision

Train Recall Train
Accuracy

Test
Precision

Test Recall Test
Accuracy

NDCG
score

Naïve Bayes 0.84845 0.17635 0.52615 0.82758 0.18570 0.53103 0.93080

Support Vector
Classifier

0.65799 0.75702 0.64733 0.65365 0.76194 0.64714 0.96391

Decision Tree
Classifier

0.73643 0.70193 0.69563 0.65995 0.62630 0.61711 0.97300

Random Forest
Classifier

0.71728 0.73275 0.69187 0.64734 0.67091 0.61811 0.97323

Multi-layer
Perceptron
Classifier

0.67849 0.71672 0.65484 0.66866 0.71096 0.64739 0.98642

Logistic
Regression

0.66597 0.726656 0.646584 0.66625 0.73782 0.65265 0.98777

Gradient
Boosting
Classifier

0.67542 0.72880 0.65565 0.66223 0.72553 0.64564 0.98795

AdaBoost
Classifier

0.65828 0.75714 0.64764 0.64916 0.75967 0.64214 0.98797

Light GBM
Classifier

0.67050 0.74302 0.65528 0.66056 0.73873 0.64764 0.98801

XGBoost
Classifier

0.70985 0.74415 0.68968 0.65704 0.69412 0.63263 0.98803

Table 2 Performance of models using Pointwise learning Approach

3. CONCLUSIONS

A good recommender system must be capable of not only
providing recommendations but also ranking them. The
relevant features to be considered while recommending and
ranking may be different. In this work, the user-interactions
on Movie-Lens 100K Dataset were simulated in order to
replicate the real-world interactions of users with an e-
commerce website. A pointwise approach was used for
learning the ranking function. The performance of several
prominent machine learning models was documented. It was
found that Gradient Boosting methods perform considerably
better than the other methods in the learning to rank task.
The Light GBM classifier model with an NDCG score of
0.98801 and XGBoost Classifier model with an NDCG score of
0.98803 were found to outperform all other models in the
ranking task. In the future we seek to extend this work by
adopting Pairwise and Listwise approaches to learning
which are generally considered to be more optimal.

ACKNOWLEDGEMENT

We would like to thank RV College of Engineering for
actively supporting this work

REFERENCES

[1] V.M. Robin, and V.S. Maarten. ‘Using Content-Based

Filtering for Recommendation’, NetlinQ Group, Gerard
Brandtstraat, Amsterdam, The Netherlands, pp. 26-28.
1999.

[2] Zhang, R., Liu, Q., Chun-Gui, Wei, J.-X., & Huiyi-Ma.
(2014). ‘Collaborative Filtering for Recommender
Systems’. 2014 Second International Conference on
Advanced Cloud and Big Data. doi:10.1109/cbd.2014.47

[3] Chen Wen-Hao, Hsu Chin-Chi, Lai Yi-An, Liu Vincent, Yeh
Mi-Yen, Lin Shou-De(2019),'Attribute-Aware
Recommender System Based on Collaborative Filtering:
Survey and Classification' ,Frontiers in Big Data Vol 2,
doi:10.3389/fdata.2019.00049

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1674

[4] Sharma, Amit & Yan, Baoshi. (2013). Pairwise learning
in recommendation: Experiments with community
recommendation on linkedin. RecSys 2013 -
Proceedings of the 7th ACM Conference on
Recommender Systems. 193-200.
10.1145/2507157.2507175

[5] Shi, Yue & Larson, Martha & Hanjalic, Alan. (2010). List-
wise learning to rank with matrix factorization for
collaborative filtering. 269-272.
10.1145/1864708.1864764.

[6] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M.,
Hamilton, N., & Hullender, G. (2005). Learning to rank
using gradient descent. Proceedings of the 22nd
International Conference on Machine Learning - ICML
’05. doi:10.1145/1102351.1102363

[7] Christopher J.C. Burges, Robert Ragno, and Quoc Viet Le.
‘Learning to rank with nonsmooth cost functions’.
Proceedings of the NIPS, 2006

[8] Christopher J C Burges, Krysta M Svore, Paul N. Bennett,
Andrzej Pastusiak, and Qiang Wu. Learning to rank using
an ensemble of lambda-gradient models. Journal of
Machine Learning Research (JMLR) 14:25–35, 2011.

[9] Christopher J.C. Burges. From ranknet to lambdarank to
lambdamart: An overview. 2010

[10] Harper F. Maxwell and Konstan Joseph A. The
MovieLens Datasets: History and Context. ACM
Transactions on Interactive Intelligent Systems (TIIS).
2015 Dec; 5(4). Available from
http://dx.doi.org/10.1145/2827872

[11] B. H. Shekar and G. Dagnew, "Grid Search-Based
Hyperparameter Tuning and Classification of Microarray
Cancer Data," 2019 Second International Conference on
Advanced Computational and Communication
Paradigms (ICACCP), Gangtok, India, 2019, pp. 1-8, doi:
10.1109/ICACCP.2019.8882943.

[12] Wang, Yining & Wang, Liwei & Li, Yuanzhi & He, Di & Liu,
Tie-Yan & Chen, Wei. (2013). A Theoretical Analysis of
NDCG Type Ranking Measures. Journal of Machine
Learning Research. 30.

[13] Tharwat, Alaa. (2018). AdaBoost classifier: an overview.
10.13140/RG.2.2.19929.01122.

[14] Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei
Chen, Weidong Ma, Qiwei Ye and Tie-Yan Liu.
“LightGBM: A Highly Efficient Gradient Boosting
Decision Tree.” NIPS (2017).

[15] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting
System. Proceedings of the 22nd ACMSIGKDD
International Conference on Knowledge Discovery and
Data Mining—KDD ‘16. New York,New York, USA: ACM
Press; 2016. pp. 785–794

BIOGRAPHIES

Shubham phal is a student pursuing his bachelors in
Computer Science and Engineering at R.V College of
Engineering (RVCE), Bangalore, India. His research interests
include Big Data Analytics and Machine learning. He has
worked on various projects in the Machine Learning and
Deep learning space and has published several research
papers in international conferences of ACM and IEEE. He is
currently an intern at Morgan Stanley India

Prof. Smriti Srivastava is Masters in Computer Science and
Engineering with a wide experience of 10 years in teaching.
Working currently at R.V.C.E as Assistant Professor. Areas of
interest includes wireless networks and machine learning.

http://dx.doi.org/10.1145/2827872

