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Abstract – Customer support plays an important role in 
an organization’s ability to generate revenue and income. 
Support staff spend a lot of time answering questions via 
telephone to make sure that the customers are satisfied with 
their business. Customer support through telephone is time 
consuming, exasperating and possibly leaves the customer 
with unresolved issues. In this paper we introduce more 
efficient way to resolve customer queries. Today’s customers 
have high expectations and want convenience, quick and 
accurate responses, complete and robust resolution, service 
that is available anywhere and anytime. All of these can be 
addressed with well-designed chatbots. The entire 
experience is conversational and chat is the most 
appropriate medium as it is quick and accurate. The aim is 
to implement a chatbot which can resolve customer queries, 
search the knowledgebase for resolution and give the 
solution. The chatbot will handle the queries; ultimately 
reducing the human effort.  
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1. INTRODUCTION  
 

Customer support and service is difficult to 
achieve. Customers buy products online, make payments, 
has queries related to products as a result they want good 
customer service for solving their queries. Traditionally, 
people use telephones to contact to the customer 
executive. This process is very time consuming as the 
customers need to wait on the line for a lot of time before 
their request is processed. The customers get frustrated 
when they ask the same question again and again, lodge 
complaints and they don’t receive a response for days. 
Also, the cost of phone interaction between the customer 
as well as executive is also more. So, to solve this issue we 
introduce chatbots which is a computer program that we 
can talk to via text, chat or voice. Using Artificial 
Intelligence (AI) Powered chatbots, enterprises can be 
closer to achieving efficient and automated customer 
service which can lead to better engagement and 
understanding [1]. 
 
 A chatbot is a computer program through which you can 
talk to, through messaging applications. The chatbot 
replies through the same messaging application, creating a 
back and forth conversation between the customer and 

the bot. The chatbot has the ability to respond 
immediately as they serve as round the clock agent which 
is available 24/7, 365 days. Chatbots reduces human error 
as well personalizes the customer service. Chatbots, are a 
major innovation in the field of AI. 

 
 Chatbots are highly responsive, interactive which 

resembles human conversations using AI tools and 
techniques and resolves customer queries or needs 
anytime with the ease of chat. A customer can put a 
question or query and the chatbot replies with the right 
response. Based on the situation, the chatbots can learn 
from the utterances in the conversation and further 
personalize the responses and learn from the past 
connections [1]. Chatbots have a lots benefits including a 
24/7 customer service, timely responses and effective 
inquiry handling, reduced cost of customer service and 
best customer satisfaction. They outperform humans in 
terms of speed and accuracy. 
 

2. LITERATURE SURVEY 
 

Conversional assistants are becoming integral 
part of daily life. Rasa Core and Rasa Natural Language 
understanding (NLU) are easy to use tools for building 
conversational systems [2]. Rasa is an essential set of tools 
for building more advanced and efficient AI 
assistants/chatbots. The benefit of rasa is the 
infrastructure and tools which provides the user with high 
performance, resilient and proprietary intelligent chatbots 
that work. Rasa helps all developers create better text and 
voice-based chatbots. Rasa’s NLU helps the developers 
with the technology and the tools necessary for capturing 
and understanding user input, determining the intent and 
entities. Rasa supports multiple languages, single and 
multiple intent, and both pre-trained and custom entities 
[3].  
 
 Rasa is an opensource framework for building AI bots. 
Rasa open source framework consists of two components: 
- Rasa NLU and Rasa core. Rasa recommends using both 
Rasa NLU and core, but they can be used independently of 
each other. Rasa core is the component which handles the 
dialogue engine for the framework and helps in creating 
more complex chatbots with customization. Rasa provides 
an opportunity for interactive learning. Chatbots can be 
enhanced because of the flexibility options provided by 
the Rasa framework. The chatbot can be easily deployed, 
integrated and connected to websites and applications [3].  
 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 05 | May 2020                   www.irjet.net                                                                   p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 1126 

Rasa being an open source framework it is very 
convenient and easy to customize. Most of the chatbot 
framework available are totally cloud based and provides 
software as a service. Business, enterprises and clients do 
not wish to share their data on cloud or any third-party 
service. Rasa fits the best when you don’t want to send 
your data to external device. We choose rasa as our 
framework because it is not cloud based and can be easily 
customized. Rasa allows the user to build, host and deploy 
Rasa internally in our server or environment. Deploying 
the Rasa on our own server can help to secure the data. 
Rasa provides better control and flexibility in deploying 
the chatbot. It is free and open source which makes a go to 
choice for building chatbots. [4].  
 

3. PROPOSED MODEL  
 

In this paper we present a chatbot which is a 
banking Chatbot called Jarvis which resolves all the bank 
related queries. The chatbot’s model can be divided into 
three sections – Backend, ML model and Frontend. The 
main functionality of the chatbot is carried out by Rasa 
Framework.  
 

 
 

Fig -1: Proposed Model 

 
3.1 Backend 
 

The Backend is built on Rasa Framework. Rasa 
framework is based on Python. Rasa is responsible for 
handling the user input, identifying the intents and entities 
and creating the responses. We have used both Rasa NLU 
and Rasa core. Rasa NLU provides the capability for 
classification of intent and extraction of entity from the 
user input and helps in understanding what the user is 
saying [5]. Rasa NLU handles all NLP stuffs. Rasa NLU 
deals with teaching a chatbot on how to understand user 
inputs. The concept of intents is used by Rasa to describe 
how user messages should be categorized. Rasa NLU 
classifies the user inputs into one ore multiple intents. As 
soon as the user enters the query or question, Rasa 
receives the message from the end user, it extracts the 

“intent” and “entities” present in the message. Intent is 
what the user aims to say or what the user wants [6]. 
Suppose the user types “hey”, “hello”, “hi” the intent here 
is greet. Suppose if the user types “I want to block my 
debit card” or “I lost my debit card” the intent here is 
block_card. 
 

 Entity is extracting pieces of information from the 
user input, which helps the chatbot. It specifically helps to 
understand what a user is asking about by recognizing the 
structured data in the sentence. Suppose the user wants a 
loan. Then loan eligibility is the intent and the entities are 
gender, income, self-employed etc. are the entities. The 
intents and entities serve as training data for Rasa NLU. 
The training data contains multiple intents and entities for 
the chatbot to understand the text. Training data is written 
to nlu.md file. Each intent is followed by multiple 
examples of how user might express the intent. Multiple 
examples of customer queries are provided below each 
intent because people often make a spelling mistake or the 
statement is not grammatically correct. Mentioning many 
examples, even spelling mistakes can improve bot’s 
capability to resolve the query. We need the above 
training data to train the NLU model. NLU model is used to 
extract the useful intent and entities from the text input. 
By training the NLU model on training data helps to 
identify the intent and entity. 

 
 A training pipeline is used to create an NLU 

model. A training pipeline is a sequence of processing 
steps which allows the model to learn the training data’s 
underlying pattern. Once training data is ready, we need to 
feed it to the NLU model pipeline. Rasa has a number of 
different components which together makes a pipeline. All 
the components listed in the pipeline will get trained. The 
input and query data flows through the pipeline for intent 
classification and entity extraction. The 
supervised_embedding pipeline trains the model from the 
starch using the training data. It has many advantages like 
adapting to domain specific words since the model is 
trained on out our data. It allows to build assistants in any 
language and also supports multiple intents. The 
processing pipeline is defined in the config.yml file [7].  

 
Rasa has excellent command line interface. We 

now run the command “rasa train nlu”. This command 
trains the model and saves it in the model’s directory. We 
can now test the model using “rasa shell nlu” command. 
The bot can now understand what user says. The bot now 
needs to give a response. This is where dialogue 
management comes into picture. To accomplish this end to 
end conversation we use rasa core the second component 
of rasa. Rasa core teaches the bot to respond to the query. 
Dialogue management controls the next action the bot 
takes during the conversation. Based on the intents, 
entities and conversation history, Rasa core decides which 
text response should be sent to the user. Rasa core uses 
Machine earning to pick up conversation patterns from 
conversation examples. Based on these patterns, the bot 
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can generalize which allows the model to predict the next 
best action. We need to provide training examples 
containing a few conversations, it is not necessary to 
provide every possible conversation since it gathers new 
conversational data directly through real user 
interactions.  
 

Stories is the basic unit in rasa core for dialogue 
management and training. Stories are sample 
conversations between user and bot. It is stored in 
stories.md file. Stories have a specific format to represent 
the input as intent, entities and responses are the action 
names [8]. Actions is operations rasa runs for replying to 
the user query. Actions also contains custom code which 
retrieves a response by making an API call [9]. There are 
two types of actions utterances and custom actions. 
Utterances are replies intended towards a specific intent. 
Custom action executes a custom code like fetching data 
from API. Defining a domain file is important for dialogue 
management. The domain file includes what the user 
intents, entities, Reponses the model provides such as 
utterances and custom actions and slots. Slots are 
important element of domain file. Slots functions as the 
bot’s memory. It is used by the bot to remember important 
details. Slots act as key value pair. There many types of 
slot. Some of them are text, categorial, float and list. In our 
chatbot Jarvis the bot predicts the loan legibility. For that 
the bot queries the customer details. We have categorical 
slots for intents like gender(male, female), selfemployed 
(yes, no), education (yes, no). 
 

Custom action can check if the user is eligible for 
loan or not. Custom action runs on a separate server than 
the server that the model runs on. When a custom action is 
predicted, Rasa calls an endpoint. This endpoint should be 
a webserver that reacts this call, runs the code and returns 
the information to modify the dialogue state. The action 
server is deployed on localhost:5055 using webhooks. We 
now need to retrain the model using the command “rasa 
train”. The chatbot can be accessed using a POST API call 
with user id and user message in the body in the json 
format and returns the user id and the bot message in json 
format. Backend is such that any ML model can be 
deployed on the server and can be used by making an API 
call. Rasa also provides interactive learning, in which you 
can provide feedback to the bot while talking to it. This is a 
powerful way to explore what the bot can do, and the 
easiest way to fix any mistakes it makes. 

 

3.2 ML Model Integrations  
 

The loan is one of the most important criteria to 
any customer. Banks need effective business strategies to 
influence more customers to apply their loans. However, 
there are some customers who are not able to pay off the 
loan after their application are approved. Therefore, many 
Financial institutions take several variables into account 
while approving a loan. Our machine learning model 
predicts whether you are eligible for a loan or not 

based on whether a given borrower will be able to fully 
pay off the loan. 

ML model can be integrated with the chatbot and 
deployed on server. We can integrate any number of ML 
model depending on the need of the chatbot. ML model 
here is used for loan prediction, which determines 
whether you are eligible for a loan or not based on entities 
like gender(Male or Female), Married (Yes or No), Self-
Employed(Yes or no), Number of dependents(0/1/2/3+), 
Credit History( 0-bad / 1-good), Property 
Area(Urban/Semi-Urban/Rural), Loan Amount(Required), 
Loan Tenure in years(Preferred), Applicant income, Co-
applicant Income, EMI (calculated), Total Income. To 
remove the skewness in the graph of total income we have 
used a log function to smoothen the graph. A csv file of 
records is taken, the data is cleaned and the missing values 
are dealt. The categorical values are replaced by mode, 
numerical values are replaced by median and the 
categorical values are mapped to 0/1.  
 

We have used logistic regression for Loan 
predictability. Logistic Regression is a binary Predictive 
model. The purpose of this algorithm is to find the plane 
that separate two types. We used model selection to 
choose between Random Forest, Logistic Regression, 
Naïve Bayes. Logistic had the Highest accuracy of 80%. 
Based on the above entities the model determines if a 
particular user is eligible for loan or not and responds 
with a yes or no. The model is deployed on localhost:5000 
using Flask API. Flask API accesses models to make the 
prediction and sends the prediction to the chatbot in JSON 
format. 

 
3.3 Frontend  
 

The frontend for our implementation is a chat 
widget. The widget can be easily added to the HTML code 
for any website. It has been made using HTML, CSS and 
JavaScript. The widget is responsive and resizes 
depending on the viewport size of the screen that it is 
being displayed on. It makes use of images to represent 
the user and the bot. The color and images of the widget 
are easily customizable. Rasa allows the use of UI 
components like buttons and images to be used as 
response by the bot. These can be defined in the 
domain.yml file under ‘utterances’. As shown in Fig-2 the 
JavaScript code identifies these UI components used in the 
bot’s response and renders them correctly. 
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Fig -2: A text-only bot response 
 

 
Fig -3: Buttons for response 

 
4. RESULT AND ANALYSIS  
 

The proposed model is scalable and secure. Since 
the chatbot can be deployed on internal servers, it 
eliminates the scare of data loss or interception of data. 
Rasa makes use of natural language processing libraries 
like spaCy. These libraries can detect and process spelling 
errors, abbreviations, etc. This makes the chatbot tolerant 
to users’ mistakes and handles common language 
conventions seamlessly. The ML models are deployed such 
that they are accessible via a Flask API. Multiple models 
can be integrated to the chatbot. Each model can be 
defined as a separate intent(s) in the chatbots domain. 
These models will be accessed through custom actions 
defined in the chatbots domain. Thus, scalability can be 

achieved in terms of the number of models that can be 
integrated with the chatbot.  
 

5. CONCLUSION 
 

Chatbots are becoming an integral part of the 
digital world. It is necessary that the customer needs are 
addressed as well as customers are satisfied through the 
business. Customer expectations are growing with 
increasing technological development. Customers 
satisfaction is very important to businesses and 
enterprises because if the customers are not satisfied with 
the service customers never return. Chatbot has the ability 
to solve most of the service-related business problems. 
Customer service has always been critical for the 
determination of the success for any business 
organization. Chatbots enable a good customer service 
that never sleeps. Chatbots are powerful and dynamic 
providing a wide range of services. Chatbot development 
is a very important topic in AI industry and matter of 
research today. Chatbots are still considered as emerging 
technology, but they are quickly maturing and becoming 
an important factor for business organizations. In a 
nutshell chatbots are an innovative way for humans to 
interact with the software. Chatbots may revolutionize the 
way the customer service works.  
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