
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1125

Customer Support Chatbot Leveraging Machine Learning

Hiral Paghadal1, Anezka Virani2, Apratim Shukla3, Dr. G T Thampi4

1,2,3U.G. Students, Department of Information Technology, Thadomal Shahani Engineering College, Mumbai,
Maharashtra, India

4Principal, Thadomal Shahani Engineering College, Mumbai, Maharashtra, India

---***--
Abstract – Customer support plays an important role in
an organization’s ability to generate revenue and income.
Support staff spend a lot of time answering questions via
telephone to make sure that the customers are satisfied with
their business. Customer support through telephone is time
consuming, exasperating and possibly leaves the customer
with unresolved issues. In this paper we introduce more
efficient way to resolve customer queries. Today’s customers
have high expectations and want convenience, quick and
accurate responses, complete and robust resolution, service
that is available anywhere and anytime. All of these can be
addressed with well-designed chatbots. The entire
experience is conversational and chat is the most
appropriate medium as it is quick and accurate. The aim is
to implement a chatbot which can resolve customer queries,
search the knowledgebase for resolution and give the
solution. The chatbot will handle the queries; ultimately
reducing the human effort.

Key Words: Rasa framework, Natural Language
Processing, Rasa Natural language Understanding
(NLU), Rasa Core, Artificial Intelligence, Machine
Learning, Flask, Webhooks

1. INTRODUCTION

Customer support and service is difficult to
achieve. Customers buy products online, make payments,
has queries related to products as a result they want good
customer service for solving their queries. Traditionally,
people use telephones to contact to the customer
executive. This process is very time consuming as the
customers need to wait on the line for a lot of time before
their request is processed. The customers get frustrated
when they ask the same question again and again, lodge
complaints and they don’t receive a response for days.
Also, the cost of phone interaction between the customer
as well as executive is also more. So, to solve this issue we
introduce chatbots which is a computer program that we
can talk to via text, chat or voice. Using Artificial
Intelligence (AI) Powered chatbots, enterprises can be
closer to achieving efficient and automated customer
service which can lead to better engagement and
understanding [1].

 A chatbot is a computer program through which you can
talk to, through messaging applications. The chatbot
replies through the same messaging application, creating a
back and forth conversation between the customer and

the bot. The chatbot has the ability to respond
immediately as they serve as round the clock agent which
is available 24/7, 365 days. Chatbots reduces human error
as well personalizes the customer service. Chatbots, are a
major innovation in the field of AI.

 Chatbots are highly responsive, interactive which

resembles human conversations using AI tools and
techniques and resolves customer queries or needs
anytime with the ease of chat. A customer can put a
question or query and the chatbot replies with the right
response. Based on the situation, the chatbots can learn
from the utterances in the conversation and further
personalize the responses and learn from the past
connections [1]. Chatbots have a lots benefits including a
24/7 customer service, timely responses and effective
inquiry handling, reduced cost of customer service and
best customer satisfaction. They outperform humans in
terms of speed and accuracy.

2. LITERATURE SURVEY

Conversional assistants are becoming integral
part of daily life. Rasa Core and Rasa Natural Language
understanding (NLU) are easy to use tools for building
conversational systems [2]. Rasa is an essential set of tools
for building more advanced and efficient AI
assistants/chatbots. The benefit of rasa is the
infrastructure and tools which provides the user with high
performance, resilient and proprietary intelligent chatbots
that work. Rasa helps all developers create better text and
voice-based chatbots. Rasa’s NLU helps the developers
with the technology and the tools necessary for capturing
and understanding user input, determining the intent and
entities. Rasa supports multiple languages, single and
multiple intent, and both pre-trained and custom entities
[3].

 Rasa is an opensource framework for building AI bots.
Rasa open source framework consists of two components:
- Rasa NLU and Rasa core. Rasa recommends using both
Rasa NLU and core, but they can be used independently of
each other. Rasa core is the component which handles the
dialogue engine for the framework and helps in creating
more complex chatbots with customization. Rasa provides
an opportunity for interactive learning. Chatbots can be
enhanced because of the flexibility options provided by
the Rasa framework. The chatbot can be easily deployed,
integrated and connected to websites and applications [3].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1126

Rasa being an open source framework it is very
convenient and easy to customize. Most of the chatbot
framework available are totally cloud based and provides
software as a service. Business, enterprises and clients do
not wish to share their data on cloud or any third-party
service. Rasa fits the best when you don’t want to send
your data to external device. We choose rasa as our
framework because it is not cloud based and can be easily
customized. Rasa allows the user to build, host and deploy
Rasa internally in our server or environment. Deploying
the Rasa on our own server can help to secure the data.
Rasa provides better control and flexibility in deploying
the chatbot. It is free and open source which makes a go to
choice for building chatbots. [4].

3. PROPOSED MODEL

In this paper we present a chatbot which is a
banking Chatbot called Jarvis which resolves all the bank
related queries. The chatbot’s model can be divided into
three sections – Backend, ML model and Frontend. The
main functionality of the chatbot is carried out by Rasa
Framework.

Fig -1: Proposed Model

3.1 Backend

The Backend is built on Rasa Framework. Rasa
framework is based on Python. Rasa is responsible for
handling the user input, identifying the intents and entities
and creating the responses. We have used both Rasa NLU
and Rasa core. Rasa NLU provides the capability for
classification of intent and extraction of entity from the
user input and helps in understanding what the user is
saying [5]. Rasa NLU handles all NLP stuffs. Rasa NLU
deals with teaching a chatbot on how to understand user
inputs. The concept of intents is used by Rasa to describe
how user messages should be categorized. Rasa NLU
classifies the user inputs into one ore multiple intents. As
soon as the user enters the query or question, Rasa
receives the message from the end user, it extracts the

“intent” and “entities” present in the message. Intent is
what the user aims to say or what the user wants [6].
Suppose the user types “hey”, “hello”, “hi” the intent here
is greet. Suppose if the user types “I want to block my
debit card” or “I lost my debit card” the intent here is
block_card.

 Entity is extracting pieces of information from the
user input, which helps the chatbot. It specifically helps to
understand what a user is asking about by recognizing the
structured data in the sentence. Suppose the user wants a
loan. Then loan eligibility is the intent and the entities are
gender, income, self-employed etc. are the entities. The
intents and entities serve as training data for Rasa NLU.
The training data contains multiple intents and entities for
the chatbot to understand the text. Training data is written
to nlu.md file. Each intent is followed by multiple
examples of how user might express the intent. Multiple
examples of customer queries are provided below each
intent because people often make a spelling mistake or the
statement is not grammatically correct. Mentioning many
examples, even spelling mistakes can improve bot’s
capability to resolve the query. We need the above
training data to train the NLU model. NLU model is used to
extract the useful intent and entities from the text input.
By training the NLU model on training data helps to
identify the intent and entity.

 A training pipeline is used to create an NLU

model. A training pipeline is a sequence of processing
steps which allows the model to learn the training data’s
underlying pattern. Once training data is ready, we need to
feed it to the NLU model pipeline. Rasa has a number of
different components which together makes a pipeline. All
the components listed in the pipeline will get trained. The
input and query data flows through the pipeline for intent
classification and entity extraction. The
supervised_embedding pipeline trains the model from the
starch using the training data. It has many advantages like
adapting to domain specific words since the model is
trained on out our data. It allows to build assistants in any
language and also supports multiple intents. The
processing pipeline is defined in the config.yml file [7].

Rasa has excellent command line interface. We

now run the command “rasa train nlu”. This command
trains the model and saves it in the model’s directory. We
can now test the model using “rasa shell nlu” command.
The bot can now understand what user says. The bot now
needs to give a response. This is where dialogue
management comes into picture. To accomplish this end to
end conversation we use rasa core the second component
of rasa. Rasa core teaches the bot to respond to the query.
Dialogue management controls the next action the bot
takes during the conversation. Based on the intents,
entities and conversation history, Rasa core decides which
text response should be sent to the user. Rasa core uses
Machine earning to pick up conversation patterns from
conversation examples. Based on these patterns, the bot

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1127

can generalize which allows the model to predict the next
best action. We need to provide training examples
containing a few conversations, it is not necessary to
provide every possible conversation since it gathers new
conversational data directly through real user
interactions.

Stories is the basic unit in rasa core for dialogue
management and training. Stories are sample
conversations between user and bot. It is stored in
stories.md file. Stories have a specific format to represent
the input as intent, entities and responses are the action
names [8]. Actions is operations rasa runs for replying to
the user query. Actions also contains custom code which
retrieves a response by making an API call [9]. There are
two types of actions utterances and custom actions.
Utterances are replies intended towards a specific intent.
Custom action executes a custom code like fetching data
from API. Defining a domain file is important for dialogue
management. The domain file includes what the user
intents, entities, Reponses the model provides such as
utterances and custom actions and slots. Slots are
important element of domain file. Slots functions as the
bot’s memory. It is used by the bot to remember important
details. Slots act as key value pair. There many types of
slot. Some of them are text, categorial, float and list. In our
chatbot Jarvis the bot predicts the loan legibility. For that
the bot queries the customer details. We have categorical
slots for intents like gender(male, female), selfemployed
(yes, no), education (yes, no).

Custom action can check if the user is eligible for
loan or not. Custom action runs on a separate server than
the server that the model runs on. When a custom action is
predicted, Rasa calls an endpoint. This endpoint should be
a webserver that reacts this call, runs the code and returns
the information to modify the dialogue state. The action
server is deployed on localhost:5055 using webhooks. We
now need to retrain the model using the command “rasa
train”. The chatbot can be accessed using a POST API call
with user id and user message in the body in the json
format and returns the user id and the bot message in json
format. Backend is such that any ML model can be
deployed on the server and can be used by making an API
call. Rasa also provides interactive learning, in which you
can provide feedback to the bot while talking to it. This is a
powerful way to explore what the bot can do, and the
easiest way to fix any mistakes it makes.

3.2 ML Model Integrations

The loan is one of the most important criteria to
any customer. Banks need effective business strategies to
influence more customers to apply their loans. However,
there are some customers who are not able to pay off the
loan after their application are approved. Therefore, many
Financial institutions take several variables into account
while approving a loan. Our machine learning model
predicts whether you are eligible for a loan or not

based on whether a given borrower will be able to fully
pay off the loan.

ML model can be integrated with the chatbot and
deployed on server. We can integrate any number of ML
model depending on the need of the chatbot. ML model
here is used for loan prediction, which determines
whether you are eligible for a loan or not based on entities
like gender(Male or Female), Married (Yes or No), Self-
Employed(Yes or no), Number of dependents(0/1/2/3+),
Credit History(0-bad / 1-good), Property
Area(Urban/Semi-Urban/Rural), Loan Amount(Required),
Loan Tenure in years(Preferred), Applicant income, Co-
applicant Income, EMI (calculated), Total Income. To
remove the skewness in the graph of total income we have
used a log function to smoothen the graph. A csv file of
records is taken, the data is cleaned and the missing values
are dealt. The categorical values are replaced by mode,
numerical values are replaced by median and the
categorical values are mapped to 0/1.

We have used logistic regression for Loan
predictability. Logistic Regression is a binary Predictive
model. The purpose of this algorithm is to find the plane
that separate two types. We used model selection to
choose between Random Forest, Logistic Regression,
Naïve Bayes. Logistic had the Highest accuracy of 80%.
Based on the above entities the model determines if a
particular user is eligible for loan or not and responds
with a yes or no. The model is deployed on localhost:5000
using Flask API. Flask API accesses models to make the
prediction and sends the prediction to the chatbot in JSON
format.

3.3 Frontend

The frontend for our implementation is a chat
widget. The widget can be easily added to the HTML code
for any website. It has been made using HTML, CSS and
JavaScript. The widget is responsive and resizes
depending on the viewport size of the screen that it is
being displayed on. It makes use of images to represent
the user and the bot. The color and images of the widget
are easily customizable. Rasa allows the use of UI
components like buttons and images to be used as
response by the bot. These can be defined in the
domain.yml file under ‘utterances’. As shown in Fig-2 the
JavaScript code identifies these UI components used in the
bot’s response and renders them correctly.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1128

Fig -2: A text-only bot response

Fig -3: Buttons for response

4. RESULT AND ANALYSIS

The proposed model is scalable and secure. Since
the chatbot can be deployed on internal servers, it
eliminates the scare of data loss or interception of data.
Rasa makes use of natural language processing libraries
like spaCy. These libraries can detect and process spelling
errors, abbreviations, etc. This makes the chatbot tolerant
to users’ mistakes and handles common language
conventions seamlessly. The ML models are deployed such
that they are accessible via a Flask API. Multiple models
can be integrated to the chatbot. Each model can be
defined as a separate intent(s) in the chatbots domain.
These models will be accessed through custom actions
defined in the chatbots domain. Thus, scalability can be

achieved in terms of the number of models that can be
integrated with the chatbot.

5. CONCLUSION

Chatbots are becoming an integral part of the
digital world. It is necessary that the customer needs are
addressed as well as customers are satisfied through the
business. Customer expectations are growing with
increasing technological development. Customers
satisfaction is very important to businesses and
enterprises because if the customers are not satisfied with
the service customers never return. Chatbot has the ability
to solve most of the service-related business problems.
Customer service has always been critical for the
determination of the success for any business
organization. Chatbots enable a good customer service
that never sleeps. Chatbots are powerful and dynamic
providing a wide range of services. Chatbot development
is a very important topic in AI industry and matter of
research today. Chatbots are still considered as emerging
technology, but they are quickly maturing and becoming
an important factor for business organizations. In a
nutshell chatbots are an innovative way for humans to
interact with the software. Chatbots may revolutionize the
way the customer service works.

REFERENCES

[1] White paper by Infosys on Power through AI and

Automation through Chatbots

https://www.infosys.com/services/microsoft-
dynamics/Documents/AI-Automation-Chatbots-
Web.pdf

[2] Rasa: Open Source Language Understanding and
Dialogue Management by Tom Bocklisch, Joey
Faulkner, Nick Pawlowski, Alan Nichol

https://arxiv.org/pdf/1712.05181.pdf

[3] Website of Rasa

https://rasa.com/product/why-rasa/

[4] How to build a chatbot with Rasa: Complete Guide

https://www.datasciencelearner.com/how-to-build-
a-chatbot-rasa-complete-guide/

[5] https://blog.rasa.com/the-rasa-masterclass-
handbook-episode-1/

[6] https://blog.rasa.com/the-rasa-masterclass-
handbook-episode-2/

[7] https://blog.rasa.com/the-rasa-masterclass-
handbook-episode-3/

[8] https://blog.rasa.com/the-rasa-masterclass-
handbook-episode-5/

[9] Build a Conversational Chatbot with Rasa Stack and
Python – Rasa NLU by Romil Jain

https://medium.com/@itsromiljain/build-a-
conversational-chatbot-with-rasa-stack-and-python-
rasa-nlu-b79dfbe59491

https://www.infosys.com/services/microsoft-dynamics/Documents/AI-Automation-Chatbots-Web.pdf
https://www.infosys.com/services/microsoft-dynamics/Documents/AI-Automation-Chatbots-Web.pdf
https://www.infosys.com/services/microsoft-dynamics/Documents/AI-Automation-Chatbots-Web.pdf
https://arxiv.org/pdf/1712.05181.pdf
https://rasa.com/product/why-rasa/
https://www.datasciencelearner.com/how-to-build-a-chatbot-rasa-complete-guide/
https://www.datasciencelearner.com/how-to-build-a-chatbot-rasa-complete-guide/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-1/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-1/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-2/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-2/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-3/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-3/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-5/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-5/
https://medium.com/@itsromiljain/build-a-conversational-chatbot-with-rasa-stack-and-python-rasa-nlu-b79dfbe59491
https://medium.com/@itsromiljain/build-a-conversational-chatbot-with-rasa-stack-and-python-rasa-nlu-b79dfbe59491
https://medium.com/@itsromiljain/build-a-conversational-chatbot-with-rasa-stack-and-python-rasa-nlu-b79dfbe59491

