
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7818

On Device Deep Neural Networks For Emoji And Reply Prediction

Steffan Mathew

Student, Dept. of Dual Degree Computer Applications, Sree Narayana Guru Institute of Science and Technology
N.Paravur, Kerala,India

---***---

Abstract- In this paper we investigate a architecture for
training neural networks for prediction of emoji and text reply,
so we take the best emoji prediction model out there: DeepMoji
which is proven to provide state-of-the art accuracy. Millions
of readily available emoji occurrences on Twitter were used to
pretrain the model to learn a rich emotional representation.
This knowledge was then moved tasks using a new layer-wise
fine-tuning method to the target, obtaining improvements
over the state-of-the art within a range of tasks: emotion,
sarcasm and sentiment detection. For smart reply there is a
neural network that decides whether or not to suggest
responses, it’s for not showing suggestions when they are
unlikely to be used and keeps the system scalable LSTM neural
network processes an incoming message, then uses it to
predict the most likely responses. It can be improved by finding
only the approximate best responses. To choose a small set of
the most likely responses to show to the user that maximize
the total utility we select responses from response space which
is generated offline using a semi-supervised graph learning
approach to deliver high response quality.

Key Words: NLP-Natural Language Processing, LSTM-Long
Short Term Memory, CPU-Central Processing Unit, GPU-
Graphics Processing Unit, ML-Machine Learning

1.INTRODUCTION

In here we present a contemporary chat system, that aims to
provide an easy-to-use and efficient means of
communication along with a handful of useful services. The
system is aimed to be a sufficient environment for social
purpose and entertainment. One’s ability to communicate
can spell the difference between successor failure in all
aspects of living. That’s why there is a growing need for
more tools and platforms that can be used to get the world
together. Sentiments play a crucial role in deciding the
meaning of our speech. It’s not just the words that make
sense, but the way they are said and the expressions that
accompany them. Machine learning has made it possible for
computers to imitate more and more human activities. A
distinctive human activity is the ability to make of what
others say and construct reasonable responses to that.

Deep neural networks are used here which are typically
large, has so many parameters contained in it so training
these network costs a high computing power with several
CPUs and GPUs. To solve this problem

we train small models for on-device prediction tasks, but this
can lead to a drop in accuracy of the prediction limits the use
of such models so by doing vocabulary pruning technique
commonly applies to limit the parameters in model which
yields lower memory footprint. Which inspired the learning
of efficient on device ML models with low memory foots that
can be run directly on device at low computation cost.

2.EMOJI PREDICTION

2.1 Work Flow

2.1.1 Pretraining

Emoji prediction model used data from Twitter from January
1st 2013 to June 1st 2017. Without URLs English tweets were
used for the pretraining dataset, because the content
obtained from the URL is important for understanding the
emotional content.

All tweets were tokenized on a word-by-word basis. Words
with 2 or more repeated characters were shortened to the
same token, e.g. lol and loool. A special token was used for all
URLs (only relevant for benchmark datasets), user mentions
(e.g. ‘@acl2017’ and ‘@emnlp2017’were thus treated the
same) and numbers.

For multiple repetitions of the same emoji or multiple
different emojis: for each unique emoji type, a separate
tweet was saved for the pretraining with that emoji type as
the label, regardless of the number of occurrences of each
emoji.

The pretraining data was split into a training, validation and
test set, where the validation and test sets were randomly
sampled in such a way that each emoji was equally
represented.

2.1.2 Model Description

Prediction model uses a variant of the Long Short-Term
Memory (LSTM) model that has been successful at many NLP
tasks. It uses an embedding layer of 256 dimensions to
project each word into a vector space. A hyperbolic tangent
activation function is used to enforce a constraint of each
embedding dimension being within [-1, 1]. To capture the
context of each word the model uses two bidirectional LSTM
layers with 1024 hidden units in each (512 in each
direction). Finally, By using skip connection all these layers

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7819

taken by the attention layer is served as input. Fig-1
illustrates the model’s architecture.

Fig -1: Illustration of the DeepMoji model with T being text
length and C the number of classes.

The model decides the importance of each word for the
prediction task by weighing them when constructing the
representation of the text. A simple approach is used:

ht : the representation of the word at time step t.
wa: the weight matrix for the attention layer.
at : the attention importance scores for each time step.
v : the representation vector for the text.

This representation vector obtained from the attention layer
v is a high-level encoding of the entire text, which is used as
input to the final Softmax layer for classification.

2.1.3 Transfer Learning

The model was fine-tuned to the target task with freezing
layers by disabling parameters updates to prevent
overfitting. The model used a new simple transfer learning
approach, presented by DeepMoji as chain-thaw, that
sequentially unfreezes and fine-tunes a single layer at a time.
It increases accuracy on the target task at the expense of
extra computational power needed for the fine-tuning. By
training each layer separately, the model is able to adjust the
individual patterns across the network with a reduced risk of
over fitting. Using the chain-thaw approach, each layer was
fine-tuned individually starting from the first layer in the
network.

The entire model was then trained with all layers. Each time
the model converged as measured on the validation set, the
weights were reloaded to the best setting, thereby
preventing overfitting. Fig-1.1 illustrates this approach

Fig -1.1: Iteratively training part of the network (starting
with step a and finishing with step d). Blue layers are frozen
and thus not uploaded.

2.2 Dataset

The dataset used was extracted from Twitter. Without URLs
English tweets were used for the pretraining dataset,
because the content obtained from the URL is important for
understanding the emotional content.

A dataset of 56.6 billion tweets were used, which was then
filtered to 1.2 billion relevant tweets. In the pretraining
dataset, a copy of a single tweet was stored once for each
unique emoji, resulting in a dataset consisting of 1.6 billion
tweets. For valuate performance on the a validation set, pre
training task and a test set both containing 640K tweets
(10K of each emoji type) were used, the remaining tweets
were used for the training set. Fig-1.2 shows the distribution
of tweets across different emoji types.

Fig -1.2: The number of tweets in the pretraining dataset
associated with each emoji in millions.

3.SMART REPLY

3.1 Workflow

Smart reply consists of the following components (see fig -
2):

1.Triggering model: A neural network that decides whether
or not to suggest responses. This improves utility by not
showing suggestions when they are unlikely to be used and
keeps the system scalable.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7820

2.Response selection: An LSTM neural network processes
an incoming message, then uses it to predict the most likely
responses. It can be improved by finding only the
approximate best responses
3.Diversity: To choose a small set of the most likely
responses to show to the user that maximize the total utility.
4.Response set generation: Select responses from response
space which is generated offline using a semi-supervised
graph learning approach to deliver high response quality.

Fig -2: Smart Reply Components

3.1.1 Response selection

The set of all possible responses R and Given original
message o, we would like to find:

The model itself is an LSTM whose input is the tokens of
the original message

and the output is the conditional probability of the
sequence of response tokens given the input:

This can be factorized as:

First, the sequence of original message tokens are read in,
such that the LSTM’s hidden state encodes a vector
representation of the whole message. Then, given this
hidden state, a soft max output is computed and interpreted
as P (r1|o1,...,on) which is the probability for the first
response token, as response tokens are fed in, the soft max at
each timestep t is interpreted as P (rt|o1,...,on). then these
soft maxes can be used to compute.

Training: We want to maximize the log probability of
observed responses, given their respective originals using
stochastic gradient descent from given large corpus of
messages:

Both our input and output vocabularies consist of the most
frequent English words in our training data after
preprocessing.

Inference: We feed in an original message and then use the
output of the soft maxes to get a probability distribution
over the vocabulary. These distributions can be used in a
variety of ways:
• From the response distribution draw a random sample
• By greedily taking the most likely token at each time step
and feeding it back in we can approximate the most likely
response.

3.1.2 Response set generation

We first need to define a target response space that
comprises high quality messages which can be surfaced as
suggestions. The goal here is to generate a structured
response set that effectively captures various intents
conveyed by people in natural language conversations.
Target response space should capture both variability in
language and intents.

• Converting email responses: The first step is to
automatically generate a set of canonical responses
messages that capture the variability in language. For
example, responses such as "Thanks for your beautiful gift.",
"Thank you for the gift!" convey the same information. We
use its syntactic structure to generate a canonicalized
representation and parse each sentence using a dependency
parser.

• Semantic intent clustering: In next step, a cluster
represents a meaningful response intent when we partition
all response messages into "semantic" clusters (for example,
"thank you" type of response versus "sorry"). We need to
access semantic intents with its corresponding large corpus
of sentences. However, it’s neither at this scale nor readily
available for our task. Moreover, unlike typical machine
learning classification tasks, the semantic intent space can’t
be fully defined a priori. So instead, we model the task as a
semi-supervised machine learning problem to automatically
learn this information from data and a few human-provided
examples.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7821

• Semi-supervised learning: Next, From the manually
labeled examples through the graph we learn a semantic
labeling for all response nodes by propagating semantic
intent information. We minimize the following objective
function for response nodes in the graph.

• Cluster Validation: Finally, by sorting their label scores
we extract the top k members for each semantic cluster.
Then human raters validate the set of (cluster label,
response) pairs. The raters are provided with a response Ri,
a corresponding cluster label C (e.g., thanks) as well as few
example responses belonging to the cluster (e.g., “HI!",
"Hello.") and asked whether C belonged by Ri. The result is a
validated set of high-quality response messages labeled with
semantic intent and automatically. This is subsequently used
by the response scoring model to search for approximate
best responses to an incoming email and further to enforce
diversity among the top responses chosen.

3.1.3 Suggestion diversity

To show the user we choose a small amount of option. A
straightforward approach would be to just choose the N top
responses and present them to the user. But these responses
may be very similar. When the response options are not
redundant at least one response being useful is greatest. To
select a more varied set of suggestions we use diversity
component using two strategies: omitting redundant
responses and enforcing negative or positive responses.

• Omitting Redundant Responses: The user should never
see two responses of the same intent. An intent is a cluster of
responses that have a common purpose. In Smart Reply,
there is exactly only one intent for every target response
which is associated with it. The actual diversity strategy is
simple which is the top responses are iterated over in the
order of decreasing score. If its intent is already covered by a
response on the suggestion list then it is added to the
suggestion list. The resulting list contains only the highest-
scored representative of each intent, and these
representatives are ordered by decreasing score.

• Enforcing Negatives and Positives: The LSTM has a
strong tendency towards producing positive responses,
whereas negative responses such as I can’t make it or I don’t
think so typically receive low scores. That is because positive
replies may be more common. But it may be important to
offer negative suggestions in order to give the user a real
choice and this can be implemented through the following
strategy:

–If none of the top three responses are negative, the third
response is replaced with a negative one and the top two
responses (after omitting redundant responses) contain at
least one positive response
 – In order to find the negative response, a second LSTM pass
is performed. In this second pass, in the target set the search
is restricted to only the negative responses.

3.2 Challenges

3.2.1 Response Quality
A high quality response is not necessarily the most probable.
A response that happens frequently in our corpus may not
be appropriate to surface back to users. For example, it could
contain poor grammar or spelling (your the best!). Also it
may be informal or politically incorrect.
So we use semi-supervised learning to construct a target
response space R comprising only high quality responses.

3.2.2 Utility

Suggestions are most useful when they are highly specific to
the original message, for example if the response is "Yes, I’ll
be there", it is common but unspecific response. So to
improve specificity of responses, we apply some light
normalization that penalizes responses which are applicable
to a broad range of incoming messages. For example, the
very generic "Yes!" has fallen out of the top ten. Also to
increase the breadth of options shown to the user, we
enforce diversity by exploiting the semantic structure of R.
Passing each message through a triggering model we can
improve the utility of suggestions that determines whether
suggestions should be generated at all.

3.3 Dataset

• Training set: It is separated into 3 columns: the context of
the conversation, the candidate response, and a flag or ’label’
(= 0 or 1) denoting whether the response is a ’true response’
to the context (flag = 1), or a randomly drawn response from
elsewhere within the dataset (flag = 0). Train.csv is 463Mb,
with 1,000,000 lines (ie. examples, which corresponds to
449,070 dialogues) and with a vocabulary size of 1,344,620.

• Validation set: Contains the validation set. Each row
represents a question. Separated into 11 columns: the
context, truth response or ’ground truth utterance’, and 9
false responses or ’distractors’ that were randomly sampled
from elsewhere within the dataset. if it select the ground
truth your model gets a question

utterance from amongst the 10 possible responses. valid.csv
is 26.99Mb, with 19,551 lines and a vocabulary size of
115,687.

• Testing set:
Contains the test set. Formatted in the same way as the
validation set. test.csv is 26.99Mb, with 18,920 lines and a
vocabulary size of 115,622.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7822

3.4 Output

Output of the model is mainly a list containing the generated
responses by the model as indicated in the following
example:
Input:
"How are you?"
Output:
• "I am fine, thank you"
• "Okay and you?"
• "Fine, thank you"
• "I am great"

4.PERFORMANCE

4.1 Emoji Prediction

emoji prediction model is based on the DeepMoji model that
was built and trained by MIT. It’s by far the best model out
there which is proven to provide state-of-the-art
performance. In the following subsections we evaluate and
analyze the model from various perspectives.

4.1.1 Experiments

The performance of the model is evaluated on the
pretraining task with the results shown in figure-3 Both top
1 and top 5 accuracy are used for the evaluation with
multiple emojis being potentially correct for any given
sentence as the emoji labels are noisy. For comparison we
also use a version of the model with smaller LSTM layers and
a bag-of-words (fast text) classifier. For the latter classifier
256 dimensions were used, thereby making it almost
identical to only using the embedding layer from our model.

Fig -3: Accuracy of classifiers on the emoji prediction task d
refers to the dimensionality of each LSTM layer. Paramaters
are in millions.
The difference in top 5 accuracy between the fast text
classifier (36.2%) and the largest model (43.8%) underlines
the difficulty of the emoji prediction task. As the two
classifiers only differ in that our model has LSTM layers and
an attention layer between the embedding and Soft max
layer, this difference in accuracy demonstrates the
importance of capturing the context of each word.

4.1.2 Model Analysis

Many of the emojis carry similar emotional content, but have
subtle differences in usage that the model is able to capture.
Through hierarchical clustering on the correlation matrix of
the model’s predictions on the test set we can see that the
model captures many similarities that one would intuitively
expect (see Figure 3.1).

Figure 3.1 shows hierarchical clustering of the model’s
predictions across categories on the test set. It shows how
the model learns to group emojis into overall categories and
subcategories based on emotional content. The y-axis is the
distance on the correlation matrix of the model’s predictions
measured using average linkage. Table 1 shows the
description of benchmark datasets.

Fig -3.1: Hierarchical clustering of the model’s predictions
across categories

4.1.3 Benchmarking

DeepMoji was benchmarked on 3 different NLP tasks using 8
datasets across 5 domains. An averaged F1-measure across
classes is used for evaluation in emotion analysis and
sarcasm detection as these consist of unbalanced datasets
while sentiment datasets are evaluated using accuracy. Table
1 shows the description of datasets used. For more
information about these datasets please refer to DeepMoji’s
official illustration.

Table -1: Description of benchmark datasets

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7823

Deep Moji model out performs the state of the art across all
benchmark datasets. The new chain-thaw approach
consistently yields the highest performance or the transfer
learning. Results are averaged across 5 runs to reduce the
variance. The statistical significance of the results were
tested by comparing the performance of DeepMojivs. The
state of the art. Bootstrap testing with 10000 samples is
used. Results from DeepMoji are statistically significantly
better than the state of the art with p < 0.001 on every
benchmark dataset. Table 2 shows the results.

Table -2: Results across benchmark datasets

4.2 Smart Reply

In this section, we describe the training and test data, as well
as preprocessing steps used for all messages. Then, we
evaluate different components of the Smart Reply system.

4.2.1 Data

To generate the training data for all Smart Reply models
from sampled accounts, we extracted all pairs of an incoming
message and the user’s response to that message.

At the beginning of Smart Reply pipeline, data is
preprocessed in the following way:

 Language detection: The language of the message
is identified and non-English messages are
discarded.

 Tokenization: message and subject body are
broken into words and punctuation marks.

 Sentence segmentation: Sentences boundaries are
identified in the message body.

 Normalization: Infrequent words and entities like
personal names, URLs, email addresses, phone
numbers etc. are replaced by special tokens.

 Quotation removal: Forwarded messages are
removed and quoted original messages.

 Salutation/close removal: Salutations like Hi Mary
and closes such as Best regards, John are removed.
After the preprocessing steps, the size of the
training set is 238.0 million messages, which
include 153.0 million messages that have no
response.

4.2.2 Results

Response selection results

Perplexity
Perplexity is a measure of how well the model has fit the
data: a model which have lower perplexity assigns higher
likelihood to the test responses, so we expect it to be better
at predicting responses. Intuitively, when the model predicts
the next word, there are on average k likely candidates
means that a perplexity equal to k. In particular, we always
know exactly what should be the next word, for the ideal
scenario of perplexity equal to 1.

Table -3: Unique cluster/suggestions usage per day

Diversity results

We justify the need for a sizable response space R by
reporting statistics around unique suggestions and both the
diversity component and clusters in Table 3 Daily 12.9k
unique suggestions are generated by the Smart Reply that
belong to 376 unique semantic clusters. Out of those, people
decide to use 4,115, or 31.9% of, unique suggestions and
313, or 83.2% of, unique clusters. However, that so many
suggestions are never seened, as column 2 shows: the user
may not open an email, use the web interface instead of
mobile or just not scroll down to the bottom of the message.
Also, only one of the three displayed suggestions will be
selected by the user.

We observed, out of all suggestions used, 45% were from the
1st position, 35% from the 2nd position and 20% from the
3rd position. Since usually diverse responses is used by the
third position, we conclude that the diversity component is
crucial for the system quality.

Finally, we measured the impact of enforcing a diverse set of
responses (e.g., by not showing two responses from the same
semantic cluster) on user engagement: when we completely

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7824

disabled the diversity component and simply suggested the
three suggestions with the highest scores, the click-through
rate decreased by roughly 7.5% relative. See figure 11.3.

Fig-3.1: Usage distribution for semantic clusters
corresponding to top suggested responses.

5.DISCUSSION AND FUTURE WORK

We intend to insert also a chat-bot which is an interactive
agent or Artificial Conversational Entity that conducts a
conversation via auditory or textual methods, it will use a
sophisticated natural language processing system, or just
scan for keywords within the input, then pull a reply with
the most matching keywords, or the most similar wording
pattern, from a database. The process of building a chat-bot
can be divided into two main tasks: understanding the user’s
intent and producing the correct answer. The first task
involves understanding the user input. In order to properly
understand a user in put in a free text form, a Natural
Language Processing Engine can be used. The second task
may involve different approaches depending on the type of
the response that the chat-bot will generate. Also, Response
may be like Cleverbot’s responses [www.cleverbot.com/]
that are not pre-programmed. Instead, it learns from human
input, as user type into his message and the system finds all
keywords or an exact phrase matching the input. After
searching through its saved conversations, it responds to the
input by finding how the user responded to that input when
it was asked. So our vision is to build such a chat-bot, that
will interact with the user, respond to his questions, may
about the history of his messages, friends, or any other
statistics that may be useful for him.

6.REFERENCES

[1] WilliamFalcon.Googlesmartreply2017implementation

intensorflow.https:
//github.com/NextGenVest/google-smart-reply-2017.
2017.

[2] Bjarke Felbo et al. “Using millions of emoji
occurrences to learn any domain representations for
detecting sentiment,emotion and sarcasm”.

In:Conferenceon Empirical Methodsin Natural
Language Processing(EMNLP) (Aug. 2017).

[3] Google Brain Team. TensorFlow open source machine
learning framework.
https://www.tensorflow.org/get_started (Nov. 2015).

[4] Anjuli KannanF et al. “Smart Reply: Automated Response
Suggestion for Email”. In: (Aug. 2016).

[5] Thomas Wolf. A pyTorch implementation of the
DeepMoji model: state-ofthe-art deep learning model for
analyzing sentiment, emotion, sarcasm etc.
https://github.com/huggingface/torchMoji. 2017.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
pp. 1097–1105, 2012.

[7] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N.
Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
et al., “Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research
groups,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 82–97, 2012.

[8] Sequence to Sequence Learning with Neural Networks,
Ilya Sutskever Google ilyasu@google.com, Oriol Vinyals
Google vinyals@google.com, Quoc V. Le Google
qvl@google.com

[9] Speech Recognition for Mobile Devices at Google, Mike
Schuster, Google Research, 1600 Amphitheatre Pkwy.,
Mountain View, CA 94043, USA schuster@google.com

[10] Deep Neural Networks for Acoustic Modeling in Speech
Recognition

[11] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior,
vincent vanhoucke, Patrick Nguyen, Tara Sainath, and
brian Kingsbury]

[12] Smart Reply: Automated Response Suggestion for Email
[13] “Android Wear 2.0: Make the most of every minute.”

https://blog.google/products/ android-wear/android-
wear-20-make-most-every-minute

[14] B.-G. Chun and P. Maniatis, “Augmented smartphone
applications through clone cloud execution,” in
Proceedings of the 12th Conference on Hot Topics in
Operating Systems, HotOS’09, (Berkeley, CA, USA), pp.
8–8, USENIX Association, 2009.

[15] Deep Positron: A Deep Neural Network Using the Posit
Number System

[16] Zachariah Carmichael§, Hamed F. Langroudi, Char
Khazanov, Jeffrey Lillie, John L. Gustafson, Dhireesha
Kudithipudi Neuromorphic AI Lab, Rochester Institute
of Technology, NY, USA National University of Singapore,
Singapore

[17] K. H. Lee and N. Verma, “A low-power processor with
configurable embedded machine-learning accelerators
for high-order and adaptive analysis of medical-sensor
signals,” IEEE Journal of Solid-State Circuits, vol. 48, pp.
1625–1637, July 2013.

mailto:ilyasu@google.com
mailto:vinyals@google.com
mailto:schuster@google.com

