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Abstract- In this paper we investigate a architecture for 
training neural networks for prediction of emoji and text reply, 
so we take the best emoji prediction model out there: DeepMoji 
which is proven to provide state-of-the art accuracy. Millions 
of readily available emoji occurrences on Twitter were used to 
pretrain the model to learn a rich emotional representation. 
This knowledge was then moved tasks using a new layer-wise 
fine-tuning method to the target, obtaining improvements 
over the state-of-the art within a range of tasks: emotion, 
sarcasm and sentiment detection. For smart reply there is a 
neural network that decides whether or not to suggest 
responses, it’s for not showing suggestions when they are 
unlikely to be used and keeps the system scalable LSTM neural 
network processes an incoming message, then uses it to 
predict the most likely responses. It can be improved by finding 
only the approximate best responses. To choose a small set of 
the most likely responses to show to the user that maximize 
the total utility we select responses from response space which 
is generated offline using a semi-supervised graph learning 
approach to deliver high response quality. 

 
Key Words:  NLP-Natural Language Processing, LSTM-Long 
Short Term Memory, CPU-Central Processing Unit, GPU-
Graphics Processing Unit, ML-Machine Learning  
 

1.INTRODUCTION 
 
In here we present a contemporary chat system, that aims to 
provide an easy-to-use and efficient means of 
communication along with a handful of useful services. The 
system is aimed to be a sufficient environment for social 
purpose and entertainment. One’s ability to communicate 
can spell the difference between successor failure in all 
aspects of living. That’s why there is a growing need for 
more tools and platforms that can be used to get the world 
together. Sentiments play a crucial role in deciding the 
meaning of our speech. It’s not just the words that make 
sense, but the way they are said and the expressions that 
accompany them. Machine learning has made it possible for 
computers to imitate more and more human activities. A 
distinctive human activity is the ability to make of what 
others say and construct reasonable responses to that. 

Deep neural networks are used here which are typically 
large, has so many parameters contained in it so training 
these network costs a high computing power with several 
CPUs and GPUs. To solve this problem 

we train small models for on-device prediction tasks, but this 
can lead to a drop in accuracy of the prediction limits the use 
of such models so by doing vocabulary pruning technique 
commonly applies to limit the parameters in model which 
yields lower memory footprint. Which inspired the learning 
of efficient on device ML models with low memory foots that 
can be run directly on device at low computation cost.  

2.EMOJI PREDICTION 

2.1  Work Flow 

2.1.1  Pretraining 

Emoji prediction model used data from Twitter from January 
1st 2013 to June 1st  2017. Without URLs English tweets were 
used for the pretraining dataset, because the content 
obtained from the URL is important for understanding the 
emotional content. 

All tweets were tokenized on a word-by-word basis. Words 
with 2 or more repeated characters were shortened to the 
same token, e.g. lol and loool. A special token was used for all 
URLs (only relevant for benchmark datasets), user mentions 
(e.g. ‘@acl2017’ and ‘@emnlp2017’were thus treated the 
same) and numbers. 

For multiple repetitions of the same emoji or multiple 
different emojis: for each unique emoji type, a separate 
tweet was saved for the pretraining with that emoji type as 
the label, regardless of the number of occurrences of each 
emoji. 

The pretraining data was split into a training, validation and 
test set, where the validation and test sets were randomly 
sampled in such a way that each emoji was equally 
represented. 

2.1.2  Model Description 

Prediction model uses a variant of the Long Short-Term 
Memory (LSTM) model that has been successful at many NLP 
tasks. It uses an embedding layer of 256 dimensions to 
project each word into a vector space. A hyperbolic tangent 
activation function is used to enforce a constraint of each 
embedding dimension being within [-1, 1]. To capture the 
context of each word the model uses two bidirectional LSTM 
layers with 1024 hidden units in each (512 in each 
direction). Finally, By using skip connection all these layers 
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taken by the attention layer is served as input. Fig-1 
illustrates the model’s architecture. 

                           
Fig -1: Illustration of the DeepMoji model with T being text 
length and C the number of classes. 

 
The model decides the importance of each word for the 
prediction task by weighing them when constructing the 
representation of the text. A simple approach is used: 
 

                    
ht  : the representation of the word at time step t.  
wa: the weight matrix for the attention layer.  
at   : the attention importance scores for each time step.  
v   : the representation vector for the text. 
 
This representation vector obtained from the attention layer 
v is a high-level encoding of the entire text, which is used as 
input to the final Softmax layer for classification. 
 
2.1.3  Transfer Learning 

The model was fine-tuned to the target task with freezing 
layers by disabling parameters updates to prevent 
overfitting. The model used a new simple transfer learning 
approach, presented by DeepMoji as chain-thaw, that 
sequentially unfreezes and fine-tunes a single layer at a time. 
It increases accuracy on the target task at the expense of 
extra computational power needed for the fine-tuning. By 
training each layer separately, the model is able to adjust the 
individual patterns across the network with a reduced risk of 
over fitting. Using the chain-thaw approach, each layer was 
fine-tuned individually starting from the first layer in the 
network. 

The entire model was then trained with all layers. Each time 
the model converged as measured on the validation set, the 
weights were reloaded to the best setting, thereby 
preventing overfitting. Fig-1.1 illustrates this approach 

 

Fig -1.1: Iteratively training part of the network (starting 
with step a and finishing with step d). Blue layers are frozen 
and thus not uploaded. 
 

2.2 Dataset 

The dataset used was extracted from Twitter. Without URLs 
English tweets were used for the pretraining dataset, 
because the content obtained from the URL is important for 
understanding the emotional content. 

A dataset of 56.6 billion tweets were used, which was then 
filtered to 1.2 billion relevant tweets. In the pretraining 
dataset, a copy of a single tweet was stored once for each 
unique emoji, resulting in a dataset consisting of 1.6 billion 
tweets. For valuate performance on the a validation set, pre 
training task and a test set both containing 640K tweets 
(10K of each emoji type) were used, the remaining tweets 
were used for the training set. Fig-1.2 shows the distribution 
of tweets across different emoji types. 

 

Fig -1.2: The number of tweets in the pretraining dataset 
associated with each emoji in millions. 

3.SMART REPLY 
 
3.1 Workflow 

Smart reply consists of the following components (see fig -
2 ):  

1.Triggering model: A neural network that decides whether 
or not to suggest responses. This improves utility by not 
showing suggestions when they are unlikely to be used and 
keeps the system scalable.  
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2.Response selection: An LSTM neural network processes 
an incoming message, then uses it to predict the most likely 
responses. It can be improved by finding only the 
approximate best responses 
3.Diversity: To choose a small set of the most likely 
responses to show to the user that maximize the total utility. 
4.Response set generation: Select responses from response 
space which is generated offline using a semi-supervised 
graph learning approach to deliver high response quality. 
 

 
Fig -2: Smart Reply Components 
 
3.1.1 Response selection 

The set of all possible responses R and Given original 
message o, we would like to find: 

                        

The model itself is an LSTM whose input is the tokens of 
the original message 

                                  

and the output is the conditional probability of the 
sequence of response tokens given the input: 

                            

This can be factorized as: 

     

First, the sequence of original message tokens are read in, 
such that the LSTM’s hidden state encodes a vector 
representation of the whole message. Then, given this 
hidden state, a soft max output is computed and interpreted 
as P (r1|o1,...,on) which is the probability for the first 
response token, as response tokens are fed in, the soft max at 
each timestep t is interpreted as P (rt|o1,...,on). then these 
soft maxes can be used to compute. 

                           

Training: We want to maximize the log probability of 
observed responses, given their respective originals using 
stochastic gradient descent from given large corpus of 
messages: 

                     

Both our input and output vocabularies consist of the most 
frequent English words in our training data after 
preprocessing. 

Inference: We feed in an original message and then use the 
output of the soft maxes to get a probability distribution 
over the vocabulary. These distributions can be used in a 
variety of ways: 
• From the response distribution draw a random sample 
• By greedily taking the most likely token at each time step 
and feeding it back in we can approximate the most likely 
response. 
 

3.1.2 Response set generation 

We first need to define a target response space that 
comprises high quality messages which can be surfaced as 
suggestions. The goal here is to generate a structured 
response set that effectively captures various intents 
conveyed by people in natural language conversations. 
Target response space should capture both variability in 
language and intents. 
 
• Converting email responses: The first step is to 
automatically generate a set of canonical responses 
messages that capture the variability in language. For 
example, responses such as "Thanks for your beautiful gift.", 
"Thank you for the gift!" convey the same information. We 
use its syntactic structure to generate a canonicalized 
representation and parse each sentence using a dependency 
parser. 
 
• Semantic intent clustering: In next step, a cluster 
represents a meaningful response intent when we partition 
all response messages into "semantic" clusters (for example, 
"thank you" type of response versus "sorry"). We need to 
access semantic intents with its corresponding large corpus 
of sentences. However, it’s neither at this scale nor readily 
available for our task. Moreover, unlike typical machine 
learning classification tasks, the semantic intent space can’t 
be fully defined a priori. So instead, we model the task as a 
semi-supervised machine learning problem to automatically 
learn this information from data and a few human-provided 
examples. 
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• Semi-supervised learning: Next, From the manually 
labeled examples through the graph we learn a semantic 
labeling for all response nodes by propagating semantic 
intent information. We minimize the following objective 
function for response nodes in the graph. 

• Cluster Validation: Finally, by sorting their label scores 
we extract the top k members for each semantic cluster. 
Then human raters validate the set of (cluster label, 
response) pairs. The raters are provided with a response Ri, 
a corresponding cluster label C (e.g., thanks) as well as few 
example responses belonging to the cluster (e.g., “HI!", 
"Hello.") and asked whether C belonged by Ri. The result is a 
validated set of high-quality response messages labeled with 
semantic intent and automatically. This is subsequently used 
by the response scoring model to search for approximate 
best responses to an incoming email and further to enforce 
diversity among the top responses chosen. 

3.1.3  Suggestion diversity 

To show the user we choose a small amount of option. A 
straightforward approach would be to just choose the N top 
responses and present them to the user. But these responses 
may be very similar. When the response options are not 
redundant at least one response being useful is greatest. To 
select a more varied set of suggestions we use diversity 
component using two strategies: omitting redundant 
responses and enforcing negative or positive responses. 

• Omitting Redundant Responses: The user should never 
see two responses of the same intent. An intent is a cluster of 
responses that have a common purpose. In Smart Reply, 
there is exactly only one intent for every target response 
which is associated with it. The actual diversity strategy is 
simple which is the top responses are iterated over in the 
order of decreasing score. If its intent is already covered by a 
response on the suggestion list then it is added to the 
suggestion list. The resulting list contains only the highest-
scored representative of each intent, and these 
representatives are ordered by decreasing score.  

• Enforcing Negatives and Positives: The LSTM has a 
strong tendency towards producing positive responses, 
whereas negative responses such as I can’t make it or I don’t 
think so typically receive low scores. That is because positive 
replies may be more common. But it may be important to 
offer negative suggestions in order to give the user a real 
choice and this can be implemented through the following 
strategy: 

–If none of the top three responses are negative, the third 
response is replaced with a negative one and the top two 
responses (after omitting redundant responses) contain at 
least one positive response 
 – In order to find the negative response, a second LSTM pass 
is performed. In this second pass, in the target set the search 
is restricted to only the negative responses. 

3.2  Challenges 
 
3.2.1 Response Quality 
A high quality response is not necessarily the most probable. 
A response that happens frequently in our corpus may not 
be appropriate to surface back to users. For example, it could 
contain poor grammar or spelling (your the best!). Also it 
may be informal or politically incorrect. 
So we use semi-supervised learning to construct a target 
response space R comprising only high quality responses. 

 
3.2.2 Utility 
 
Suggestions are most useful when they are highly specific to 
the original message, for example if the response is "Yes, I’ll 
be there", it is common but unspecific response. So to 
improve specificity of responses, we apply some light 
normalization that penalizes responses which are applicable 
to a broad range of incoming messages. For example, the 
very generic "Yes!" has fallen out of the top ten. Also to 
increase the breadth of options shown to the user, we 
enforce diversity by exploiting the semantic structure of R. 
Passing each message through a triggering model we can 
improve the utility of suggestions that determines whether 
suggestions should be generated at all. 

 
3.3 Dataset 
 
• Training set: It is separated into 3 columns: the context of 
the conversation, the candidate response, and a flag or ’label’ 
(= 0 or 1) denoting whether the response is a ’true response’ 
to the context (flag = 1), or a randomly drawn response from 
elsewhere within the dataset (flag = 0). Train.csv is 463Mb, 
with 1,000,000 lines (ie. examples, which corresponds to 
449,070 dialogues) and with a vocabulary size of 1,344,620. 
 
• Validation set: Contains the validation set. Each row 
represents a question. Separated into 11 columns: the 
context, truth response or ’ground truth utterance’, and 9 
false responses or ’distractors’ that were randomly sampled 
from elsewhere within the dataset. if it select the ground 
truth your model gets a question  

utterance from amongst the 10 possible responses. valid.csv 
is 26.99Mb, with 19,551 lines and a vocabulary size of 
115,687.  
 
• Testing set:  
Contains the test set. Formatted in the same way as the 
validation set. test.csv is 26.99Mb, with 18,920 lines and a 
vocabulary size of 115,622. 
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3.4 Output 
 
Output of the model is mainly a list containing the generated 
responses by the model as indicated in the following 
example: 
Input: 
"How are you?"  
Output: 
• "I am fine, thank you"  
• "Okay and you?"  
• "Fine, thank you"  
• "I am great" 
 

4.PERFORMANCE 

4.1 Emoji Prediction 
 
emoji prediction model is based on the DeepMoji model that 
was built and trained by MIT. It’s by far the best model out 
there which is proven to provide state-of-the-art 
performance. In the following subsections we evaluate and 
analyze the model from various perspectives. 
 

4.1.1 Experiments 
 
The performance of the model is evaluated on the 
pretraining task with the results shown in figure-3 Both top 
1 and top 5 accuracy are used for the evaluation with 
multiple emojis being potentially correct for any given 
sentence as the emoji labels are noisy. For comparison we 
also use a version of the model with smaller LSTM layers and 
a bag-of-words (fast text) classifier. For the latter classifier 
256 dimensions were used, thereby making it almost 
identical to only using the embedding layer from our model. 
 

 
Fig -3: Accuracy of classifiers on the emoji prediction task d 
refers to the dimensionality of each LSTM layer. Paramaters 
are in millions. 
The difference in top 5 accuracy between the fast text 
classifier (36.2%) and the largest model (43.8%) underlines 
the difficulty of the emoji prediction task. As the two 
classifiers only differ in that our model has LSTM layers and 
an attention layer between the embedding and Soft max 
layer, this difference in accuracy demonstrates the 
importance of capturing the context of each word. 

 

 

4.1.2 Model Analysis 

Many of the emojis carry similar emotional content, but have 
subtle differences in usage that the model is able to capture. 
Through hierarchical clustering on the correlation matrix of 
the model’s predictions on the test set we can see that the 
model captures many similarities that one would intuitively 
expect (see Figure 3.1). 

Figure 3.1 shows hierarchical clustering of the model’s 
predictions across categories on the test set. It shows how 
the model learns to group emojis into overall categories and 
subcategories based on emotional content. The y-axis is the 
distance on the correlation matrix of the model’s predictions 
measured using average linkage. Table 1 shows the 
description of benchmark datasets. 

 

Fig -3.1: Hierarchical clustering of the model’s predictions 
across categories 
 

4.1.3 Benchmarking 

DeepMoji was benchmarked on 3 different NLP tasks using 8 
datasets across 5 domains. An averaged F1-measure across 
classes is used for evaluation in emotion analysis and 
sarcasm detection as these consist of unbalanced datasets 
while sentiment datasets are evaluated using accuracy. Table 
1 shows the description of datasets used. For more 
information about these datasets please refer to DeepMoji’s 
official illustration. 

Table -1: Description of benchmark datasets 
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Deep Moji model out performs the state of the art across all 
benchmark datasets. The new chain-thaw approach 
consistently yields the highest performance or the transfer 
learning. Results are averaged across 5 runs to reduce the 
variance. The statistical significance of the results were 
tested by comparing the performance of DeepMojivs. The 
state of the art. Bootstrap testing with 10000 samples is 
used. Results from DeepMoji are statistically significantly 
better than the state of the art with p < 0.001 on every 
benchmark dataset. Table 2 shows the results. 
 

Table -2: Results across benchmark datasets 

 
 

4.2 Smart Reply 

In this section, we describe the training and test data, as well 
as preprocessing steps used for all messages. Then, we 
evaluate different components of the Smart Reply system. 

4.2.1 Data 

To generate the training data for all Smart Reply models 
from sampled accounts, we extracted all pairs of an incoming 
message and the user’s response to that message. 

At the beginning of Smart Reply pipeline, data is 
preprocessed in the following way:  

 Language detection: The language of the message 
is identified and non-English messages are 
discarded. 

 Tokenization: message and subject body are 
broken into words and punctuation marks. 

 Sentence segmentation: Sentences boundaries are 
identified in the message body. 

 Normalization: Infrequent words and entities like 
personal names, URLs, email addresses, phone 
numbers etc. are replaced by special tokens. 

 Quotation removal: Forwarded messages are 
removed and quoted original messages. 

 Salutation/close removal: Salutations like Hi Mary 
and closes such as Best regards, John are removed. 
After the preprocessing steps, the size of the 
training set is 238.0 million messages, which 
include 153.0 million messages that have no 
response. 

4.2.2 Results 

Response selection results 

Perplexity  
Perplexity is a measure of how well the model has fit the 
data: a model which have lower perplexity assigns higher 
likelihood to the test responses, so we expect it to be better 
at predicting responses. Intuitively, when the model predicts 
the next word, there are on average k likely candidates 
means that a perplexity equal to k. In particular, we always 
know exactly what should be the next word, for the ideal 
scenario of perplexity equal to 1. 
 

Table -3: Unique cluster/suggestions usage per day 

 

Diversity results 

We justify the need for a sizable response space R by 
reporting statistics around unique suggestions and both the 
diversity component and clusters in Table 3 Daily 12.9k 
unique suggestions are generated by the Smart Reply that 
belong to 376 unique semantic clusters. Out of those, people 
decide to use 4,115, or 31.9% of, unique suggestions and 
313, or 83.2% of, unique clusters. However, that so many 
suggestions are never seened, as column 2 shows: the user 
may not open an email, use the web interface instead of 
mobile or just not scroll down to the bottom of the message. 
Also, only one of the three displayed suggestions will be 
selected by the user. 

We observed, out of all suggestions used, 45% were from the 
1st position, 35% from the 2nd position and 20% from the 
3rd position. Since usually diverse responses is used by the 
third position, we conclude that the diversity component is 
crucial for the system quality. 

Finally, we measured the impact of enforcing a diverse set of 
responses (e.g., by not showing two responses from the same 
semantic cluster) on user engagement: when we completely 
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disabled the diversity component and simply suggested the 
three suggestions with the highest scores, the click-through 
rate decreased by roughly 7.5% relative. See figure 11.3. 

 

Fig-3.1: Usage distribution for semantic clusters 
corresponding to top suggested responses.  
 

5.DISCUSSION AND FUTURE WORK 

We intend to insert also a chat-bot which is an interactive 
agent or Artificial Conversational Entity that conducts a 
conversation via auditory or textual methods, it will use a 
sophisticated natural language processing system, or just 
scan for keywords within the input, then pull a reply with 
the most matching keywords, or the most similar wording 
pattern, from a database. The process of building a chat-bot 
can be divided into two main tasks: understanding the user’s 
intent and producing the correct answer. The first task 
involves understanding the user input. In order to properly 
understand a user in put in a free text form, a Natural 
Language Processing Engine can be used. The second task 
may involve different approaches depending on the type of 
the response that the chat-bot will generate. Also, Response 
may be like Cleverbot’s responses [www.cleverbot.com/] 
that are not pre-programmed. Instead, it learns from human 
input, as user type into his message and the system finds all 
keywords or an exact phrase matching the input. After 
searching through its saved conversations, it responds to the 
input by finding how the user responded to that input when 
it was asked. So our vision is to build such a chat-bot, that 
will interact with the user, respond to his questions, may 
about the history of his messages, friends, or any other 
statistics that may be useful for him. 
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