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Abstract - Android is most widely used platform by the 
users all around the world. Android Platform led to the 
immense growth of mobile apps both benign and malign 
apps. As we all know Google Play is the most trusted 
Distributor of Android apps. Even Google Play is failing to 
detect malign apps .With the immense use of Smartphone 
for accessing online services, users store general, and 
confidential information on mobile device. Availability and 
Accessibility of sensitive information has encouraged cyber 
criminals to use features of smartphones for cyber attacks. 
Numerous malware detection tools have been developed, 
including system-level and network level approaches. 
However, scaling the detection for a large bundle of apps 
remains a challenging task. In this paper based on 
permissions asked by the apps during runtime, we will 
detect and will allow users to disable such permissions. 
Based on the behavioral pattern of permissions asked by 
app we classify it as an benign or malign. The Proposed 
System initially prunes the number of permissions to be 
analyzed in the three levels and then classification of apps 
as benign or malign is done by Support Vector 
Machine(SVM) Algorithm. After the Classification of apps as 
benign or malign the results are stored in a well maintained 
database for future reference. 

Key Words:  Benign, Malign, Support Vector 
Machine(SVM). 

1.INTRODUCTION  
Malware can simply mentioned as an software, or 
piece of a code which causes damage to the personal 
computer system which it resides on. There are five 
styles of malwares: viruses, worms, trojan horses, 
spyware. Viruses damage their target computer by 
corrupting data, reformatting their fixed disk, or 
completely shut their system down. They also steal 
information, affect computers and networks, create 
botnets, steal money, render advertisements etc. 
viruses copy them self and spread to other 
computers by attaching themselves with programs 

and executing code when a user runs the infected 
program. An virus requires human activity to spread 
to other computers and are usually spread through 
email attachments and internet downloads. worms 
usually are spreads through computer networks by 
exploiting package weaknesses. it's an standalone 
program or piece of code that has the capacity to 
duplicate itself to infect other computers, without 
requiring action from anyone. worms can spread fast, 
worms are mostly used for executing a payload – a 
chunk of code that has the capacity to  cause damage 
to the system. Payloads has power to delete files on a 
bunch system, encrypt data for a ransomware attack, 
steal information, delete files, and make botnets. 
Trojan tries  enter host system disguised form as an 
normal file, harmless file or program so as to trick 
users and make them download and install the  
malware, once we  install a Trojan, we  are giving 
cyber criminals access to our system, doing this 
permits the cyber criminal to steal data, install few  
more malware, modify files, monitors the user 
activity, destroy data, steal financial information, 
conduct denial of service (DoS) attacks on targeted 
web addresses, and etc.  Trojan malware don’t have 
the flexibility  duplicate by itself, however, if its 
combined with a worm, the damage Trojans can 
cause to users and systems is limitless. Spyware is 
additionally an variety of malware that Installed on 
our computer without our own knowledge, spyware 
is especially designed to trace our browsing habits 
and internet activity. Capabilities of spying  include 
activities like monitoring, collecting  data of 
keystrokes, harvesting data of account information, 
logins, and financial data, and etc. Spywares are 
spread by exploiting software vulnerabilities, 
bundling them with an legitimate software, or within 
the Trojans.In our Paper we Analyse the permissions 
asked by the apps and classify them as benign or 
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malign. Generally these type permissions requested 
crop up the primary time an app needs access to 
sensitive hardware or data on your phone or tablet. If 
you’ve installed a camera app, for instance, it'll need 
your permission to access the camera before it can 
actually take photos. So, additionally to being 
cautious about the apps you put in from google play, 
its also important to grasp which permissions those 
apps request from you. 
System permissions are divided into two groups 
namely normal and dangerous. Normal permissions 
asked by apps are allowed by default, because they 
don’t cause risk to privacy .Dangerous permissions 
asked by apps, however,  give apps access to things 
like  calling history of user, private messages of user, 
location of user, camera of user, microphone of user, 
and etc. Therefore, Android will always ask us to 
approve dangerous permissions. we either used to  
allow all permissions an app needed to function 
before installation or we declined them all, which 
meant you couldn’t install the app.  Apps need access 
to content on our phone to fulfil their functionality ,a  
picture-editing app asks access of phone camera and 
media files in order to  edit pictures saved in your 
phone. Permissions alone are harmless and are useful 
to produce users a decent mobile experience. But 
since the list of permissions required is long and 
doesn’t explain its effect, a right away reaction is to 
treat it the way you'd a ‘Terms and conditions’ 
agreement accept without reading the list and move 
to the subsequent step. 

2.LITERATURE SURVEY 

Many of the Works been carried out in knowing 
about the Malign apps and their behavior and also 
different techniques have been used to detect malign 
apps.  

In 2012, M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. 
Jiang utilized static analysis to discover malicious 
behaviors in Android apps. However, static analysis 
approaches generally assume more behaviors are 
possible than would be ,which may lead to a large 
number of false Positives[1]. 

In 2014, W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-
G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth 
utilized dynamic analysis approach to improve the 
accuracy, researchers proposed the dynamic analysis 
approach to capture real-time execution context. 

TAINTDROID Dynamically tracks multiple sensitive 
data source simultaneously using tainting 
analysis[2]. 

In 2014, D. Arp, M. Spreitzenbarth, M. H¨ubner, H. 
Gascon, K. Rieck, and C. Siemens utilized both static 
analysis approach as well as dynamic analysis 
approach and Machine learning Techniques to detect 
Android Malware. The Experimental Result  has high 
detection Accuracy by incorporating as many 
features as Possible to help detection[3]. 

In 2015, S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, 
and M. Conti Proposed TextDroid, an effective and 
automated malware detection method combining 
natural language processing and machine learning. 
TextDroid is able to extract differential features to 
classify  malware samples. A , malware detection 
model is then developed to detect mobile malware 
using Support Vector Machine(SVM)[4]. 

In 2018,Sonali Kothari Tidke, Pravin P Karde, Vilas 
Thakare ,provided a solution that will detect harmful 
permissions and will allow user to disable such 
permissions. To demonstrate the same , a sample 
malware attacks is created[5].  

In 2016, Z. Li, L. Sun, Q. Yan, W. Srisa-an, and Z. Chen, 
in this they used an approach that uses  network 
traffic analysis to build many or various models in an 
automated fashion using a supervised method over a 
set of  labeled  malware network traffic. Each and 
every model is constructed by extracting common 
identifiers from various HTTP header fields. 
Clustering is  used for  improving  the level 
classification accuracy[6]. 

3. METHODOLOGY 

Our Proposed System  has two stages:(i)Data 
Pruning (ii)Machine-Learning based Malware 
Detection 

(i)Data Pruning :The first component of our system is 
the data pruning process to identify only important  
permissions to eliminate the need of considering all 
available permissions in Android. This stage further 
has three sub stages. The complete three sub-stages 
procedure is illustrated in Figure below: 



               International Research Journal of Engineering and Technology (IRJET)     e-ISSN: 2395-0056 

                   Volume: 07 Issue: 05 | May 2020                 www.irjet.net                                                                  p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 7595 
 

Fig.1:Data Pruning 

 

1) Permission Ranking with Negative Rate 
(PRNR): This uses two matrices, M and B. M 
is list of permissions employed by malware  
and B may be a list of permissions employed 
by benign apps. Mij where  jth permission is 
requested by the ith malware ,‘1’ indicates 
yes, ‘0’ indicates no. Bij where jth permission 
is requested by the ith benign app . Note that 
the dimensions of B are often much larger 
than the dimensions of M. With our ranking 
scheme, we prefer the info assail the 2 
matrices to be balanced. Training over 
imbalanced dataset can cause skewed 
models. To balance the 2 matrices, we use 
Equation 1 to calculate the support of every 
permission within the larger dataset so 
proportionally scales down the 
corresponding support to match that of the 
smaller dataset. just in case that the amount 
of rows of B is greater than that of M, we 
have:   
 
 

 
Pj is that the jth permission, and SB(Pj) is that 
the support of jth permission in matrix B. 
Permission ranking is  implemented using 
Equation 2: 

 
    

    
This algorithm is employed to perform 
ranking of our datasets. within the formula 
above, R(Pj) represents the speed of jth 
permission. The results of R(Pj) contains a 
value ranging between [-1, 1]. If R(Pj) = 1, 
this suggests that permission Pj is merely 
utilized in malicious dataset, which may be a 
high risk permission. If R(Pj) = -1, this 

suggests that permission Pj is merely utilized 
in benign dataset which may be a low risk 
permission. If R(Pj) = 0, this suggests that Pj 
has little impact on malware detection 
effectiveness. Since both -1 and 1 are 
important, we simply take absolutely the 
value of every number and therefore the 
results of |R(Pj)|ranges between [0, 1]. We 
then evaluate malware detection by using the 
subsequent metrics precision, recall(true 
positive rate), false positive rate, accuracy, 
and F-measure. Next, we decide the highest 
three permissions in both lists to create 
malware detection. After This, we repeat the 
method with increase within the number of 
permissions to use for malware detection 
until the detection metrics plateau. the most 
goal is to seek out the tiniest number of 
permissions that yields a really similar 
malware detection effectiveness as that of 
using the whole data set. 
 

2) Support based Permission Ranking: To 
further reduce the quantity of permissions, 
we turn our focus to the support of every 
permission. Typically, if the support of a 
permission is simply too low, it doesn't have 
much impact on malware detection. as an 
example, we find the permission INTERNET 
only in benign apps. 
 
 
 
 

 

           Fig 2:Matrix Represenation of Permissions 
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As such, we might imagine that any app that 
uses INTERNET is benign. However, this 
permissions is employed only by one app out 
of over 310,926 benign apps. As such, only 
hoping on the speed provided by Permission 
Ranking with Negative Rate is inaccurate. We 
also must prune out permissions with low 
support. 

Apriori Algorithm: 

To find out permissions that occur together, 
we propose a permission mining with 
association rules (PMAR) mechanism using 
association rule mining algorithm. 
Association rule mining has been used for 
discovering meaningful relations between 
variables in large databases. For instance, if 
event A and B always co-occur, it is highly 
likely that these two events are associated. In 
this paper, we only consider rules with high 
confidence, so that applying PMAR will only 
produce a small number of rules. We employ 
Apriori , a commonly used association mining 
algorithm, to generate the association rules. 
Apriori   uses a breadth-first search strategy 
to count the support of item sets and uses a 
candidate generation process, which exploits 
the downward closure property of the 
support. Here, we only want to generate the 
association rules with high confidence even if 
the permissions have small support values. 

 

Fig.3:Apriori Algorithm 

 

3) Permission Mining with Association Rules: 
After pruning permissions by using 

Permission Ranking with Negative Rate and 
Support based permission ranking, we want 
to further explore approaches that can 
reduce non-influential permissions. By 
inspecting the reduced permission list that 
contains obvious permissions, we find three 
pairs of permissions that always appear 
together in an app. For example, permission 
WRITE SMS and permission READ SMS are 
always used together. They both also belong 
to the “dangerous” permission list provided 
by Google. As such, we can associate one, 
which has a higher support, to its partner. In 
this example, we can remove permission 
WRITE SMS. In order to find permissions that 
occur together, we apply permission mining 
with association rules . In all, we are able to 
remove three additional permissions, giving 
us  permissions that we consider as obvious. 
 

(ii) Machine-Learning based Malware Detection: We 
first use SVM and a tiny low dataset to check our 
proposed MLDP model. SVM determines a 
hyperplane that separates both classes with a 
maximal margin supported the training dataset that 
has benign and malicious applications. during this 
case, one class is related to malware, and therefore 
the other class is related to benign apps. Then, we 
assume the testing data as unknown apps, which are 
classified by mapping the info to the vector space to 
make your mind up whether it's on the malicious or 
benign side of the hyperplane. Then, we are able to 
compare all analysis results with their original 
records to judge the malware detection correctness 
of the proposed model by using SVM. 

Support Vector Machine(SVM) Algorithm: 

Support Vector Machine (SVM) could be a supervised 
machine learning Algorithm which might be used for 
both classification or regression challenges. during 
this we use SVM and a tiny low dataset to check our 
pruned permission Data sets. SVM determines a 
hyperplane that separates both classes with a margin 
supported the training dataset that features non-
malicious and malicious applications. during this 
case, one class is related to  malicious, and therefore 
the other class is related to non-malicious 
application. Then, we assume the testing data as 
unknown apps, which are classified by mapping the 
information to the   vector space to make a decision 
whether it's on the malicious or benign side of the 
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hyperplane. Then, we will compare all analysis 
results with their original records to gauge the 
malware detection correctness of the proposed 
model by using SVM. 

 

 
Fig.4:SVM Algorithm Pseudocode 

Comparison with Other Approaches: 

In this section, we compare our detection results 
with other state-of-the-art malware detection 
approaches, listed as follows: DREBIN[3] is an 
approach that uses static analysis to form data set 
supported permissions and other features from apps. 
After this we use Support Vector Machine(SVM) 
algorithm to classify malware dataset. We did not 
reimplement their approach since it requires 
significant program analysis additionally to 
permission analysis, we compare our results with the 
already reported results. PERMISSION-INDUCED 
RISK MALWARE DETECTION[8]  is an approach that 
applies permission ranking, like mutual information. 
They use the permission ranking and choose the very 
best 40 risky permissions for malware detection. We 
reimplemented their approach for comparison. Note 
that in their paper, they used a special data set and 
thus the ratio of their malicious and benign apps in 
their dataset is dominated by benign apps. As such, 
their reported results, especially false positive rate, 
are significantly different than the results achieved 
using our data set. 

The comparison results are shown in Table I. 
DREBIN uses more features than our approach, 
including API calls and network addresses. As a 

result, DREBIN is healthier than 
PERMISSIONCLASSIFIER in detection accuracy. We 
compared the results against 10 currently used anti-
virus scanners . once we combine our approach with 
FT, we are ready to achieve the highest detection rate 
(93.62%) using only 22 permissions. Discussion: 
when we compared results of our work with the 
opposite approaches that consider only risky 
permissions, our approach considers a  criteria that 
also include non-risky permissions , which are only 
employed in benign apps and have high support 
values. We deem the risky and non-risky permissions 
with high support values as significant permissions, 
allowing our approach to be simpler in 
distinguishing between malicious and benign apps 
than other existing approaches. We  noticed that the 
permission lists employed by DREBIN contain 
various meaningless features, we can achieve 
performance improvements are by combining our 
approach with FT into DREBIN to reinforce both 
malware detection accuracy and period performance. 
we'll explore this integration in our future work, 
even though we consider less number of 
permissions, our approach performance is healthier 
than most of currently used malware scanner today, 
this will be because most of these techniques depend 
on signature matching ;so if a method of malware 
signatures isn't available, the system wouldn't be 
able to detect that specific type. We also show that 
our approach is easier than DREBIN once we 
combine our permission pruning with FT. DREBIN 
could also be a more complex malware detection 
approach that also uses static program analysis. We 
try to also explore a mix of using static program 
analysis with our approach to assess whether we are 
ready to achieve higher detection effectiveness. 

4.CONCLUSION 
In this approach, we have shown that it is possible to 
reduce the number of permissions to be analyzed for 
mobile malware detection, while maintaining high 
effectiveness and accuracy. Our approach has been 
designed to extract only significant permissions 
through a systematic,3-level pruning approach. 
Based on the dataset we took, it includes over 2,000 
malware, we only need to consider 22 out of 135 
permissions to improve the runtime performance by 
85.6% while achieving over 90% detection accuracy. 
The extracted significant permissions can also be 
used by other commonly used supervised learning 
algorithms to yield the F-measure of at least 85% in 
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55 out of 67 tested algorithms. Our approach is 
highly effective, when compared to the state-of-the-
art malware detection approaches as well as existing 
virus scanners. It can detect 93.62% of malware in 
the data set, and 91.4% unknown/new malware. 
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