
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7082

Study on Performance Tuning of Web Applications

using Ad-Hoc Techniques

Arnab Jana1, Raunak Kedia2, Merin Meleet3

1Student, Dept. of Information Science and Engineering, R.V College of Engineering, Karnataka, India
2Student, Dept. of Computer Science and Engineering, Birla Institute of Technology Mesra, Jharkhand, India

3 Professor, Dept. of Information Science and Engineering, R.V College of Engineering, Karnataka, India

---***---

Abstract - Internet is the connection of millions of networks
and a billion of Web Pages. Every web page hosted on the
Internet are being hit by users across the globe. In such a
scenario it is really important to have Web app with great
performance if it has to be honoured by its users.
This review paper highlights some of the mechanisms for
improving the performance of a Web Application. Here
performance can be regarded in terms of metrics like Response
Time and Storage improvements. Response time is the time
lapse between the submit of request and the first response
recorded. In general the most theoretically best web site
should render all the components in no time, but this isn’t
practical ever. When a user submits some request to a website,
the request is marshalled from the client side, DNS mapping is
done to obtain the server IP, request travels through network
channel, Received in the Server end, Unmarshalled and finally
received by the Web Server. The response journey happens the
same way but in opposite direction. This overall request-
response cycle takes a prominent amount of time hindering
the web page to load quickly.
The above process can’t be neglected, but though the web
applications performance can be improved using some
techniques like Caching, Aggregating response, Decreasing
Contents etc. Various mechanisms and relevant ways for
making API Calls are also discussed. By using certain tweaks
and following certain conventions for writing the Web
languages like HTML, CSS and JavaScript can show significant
improvement in the response time of the application.
Techniques like Compression of the Media contents,
Progressive rendering, Minifying Scripts etc are discussed in
brief.

Key Words: Response time, Optimization, HTML, CSS,
XHTML, Progressive Rendering

1.INTRODUCTION

From the client point of view web performance is

measured as the load time of the page. That is the time lapse
between a user accessing a new page and the first instance of
the browser rendering that website. Fast web pages render
progressively. That is, their content is shown incrementally,
when the browser loads it. A web page that gradually

renders visual feedback to the user that the page is being
loaded, and provides the user with the information they have
requested as soon as it is available. Yahoo and Google has
also recommended best practices for having web pages
rendered progressively, such as adding style sheets in the
header of the text.

You may apply some additional best practices to optimize
progressive rendering for most websites. First, a simple page
will make the content first accessible to the user, and then
make the content off-screen (i.e. the content outside the
current scroll region) later. Second, before loading and
rendering heavyweight resources like images and video, a
quick page might also load and render the lightweight
resources such as text. Some Techniques on the other hand
are known to do progressive rendering in the background.
Applying style sheets late in the document can also prevent
progressive rendering, even if those style sheets aren't
required for the initial page load.

Sometimes it is also needed to store some amount of data

that is repeatedly requested by the user. This technique is
called Caching. Many recent browsers do enable caching at
various levels. Two prominent caching techniques used for
reducing the response time are Browser Caching(Cache
maintained by the browser) and Content Caching (where
caching is done at the ISP level during DNS mapping).

One of the other key aspects that affects the performance

of the web app is the heaviness of the application. Heaviness
is measured in terms of the data, dependencies or modules
required by the application. Sometimes the application
makes use of large number of dependencies and modules
and then the developer should do a trade off on what all
dependencies are needed to be packaged with the
application files and what all to be received using CDNs
(content delivery network). It is recommended to go for the
dependencies packaged only when it is used extensively
within the application. If the dependency or plugin is used to
aid some smaller changes, going for a CDN is a wise decision.

Next section discusses various techniques using which we

can improve the performance of a web application.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7083

2. PROPOSED SOLUTION

2.1 Amortizing the API calls

Any web app generally is a composure of multiple

components that are displayed on a unified interface which

tends to interact with its user. Sometimes these components

are standalone instructions to its users and sometimes they

are informative with a power of data boosted to them. When

a user interacts with any component like buttons it triggers

some event which calls a function or makes a series of API

calls to complete its request.

So, in the overall lifetime in which a user interacts with the

app, they tend to make a large number of API calls

unknowingly. If on an average each of the request takes

around 2 sec to respond and if there are around 10 API calls

then for 20 sec almost, the user is bound to wait. This type of

interaction on a live web page accessed by millions of users

can lead to very bad impression regarding the site, hence

could lead to a bad User Experience.

Fig -1: Shows the general architectural design of any

conventional Application.

One of the solutions to tackle such a scenario is to amortize

the average response time experienced by a user.

In this solution, suppose there exist a fast retrieval storage

called a Data Cache which is a large number of flat files in

some Structured or Semi-Structured format like JSON or

XML. Then these files will hold the most recent updated

results of all the possible API calls that can be made to that

web app.

Any possible event made by the user will then fetch the

details from this Data Cache which corresponds to the same

information being fetched from its equivalent API call at a

definite time stamp.

As the time required to do read operations on a file residing

in the server takes lesser time than any API request(where

the time taken depends upon the third party who created

that API endpoint), it can drastically improve the overall

experience of any user using that web app.

Fig -2: Addition of a Data Cache

Here one of the key factors that impacts the performance
is the time interval chosen for refreshing the Data Cache. This
mostly depends upon the business use case of the application.
One sample scenario may be:

If the web app’s data is changing at an interval of some
days then a 12hr interval would be descent to go for updating
the Data Cache contents as it will utilize the unproductive
time i.e when people are sleeping to update the Cache to
latest contents.

Few of the key note is that this technique can only be
beneficial if :

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7084

1. The data contents of the application is more of static in
nature than volatile:

That is if an API is continuously updated with new
content, the app will show the information pertaining to the
last timestamp in which data was refreshed. Hence
information displayed is a stale information.

2. The Data in semi-structured formatted is as minimal as
required for the proper working of the application:

As the data obtained from API calls in most of the cases are
too bulky and only a subset of the information is actually
needed. So only that subset is stored in the data cache which
is actually needed by the application can reduce down the
access time further with a bit of improvement on the storage
also.

2.2 Contents Caching

Contents Caching is a way of storing the most recent results
in a cache server which renders the data quickly as
compared to the data received from the original source
server.

When a user makes request to a webpage rendering static
contents like images, videos, stylesheets then the browser
stores some information in its local cache. If the data isn’t
available there then the user browser submits request to the
CDN. CDN uses Anycast DNS to route to the closes server
which most of the times stores some request results locally
within. Hence if the results are found from this Cache server
it loads instantly as compared to the requests being served
by Original server.

Fig -3: Contents Caching working
Thus Content Caching can also improve the response activity
of the web pages. Fig. 2.3 shows how contents caching works
for Apple based system.

2.3 Compressing the Media Objects

Image files often contains extra information embedded in the
files. Sometimes their contextual use demands their sizes to
be small and hence having that much detailed information is
not needed. The images can then be compressed using some
lossless compression to achieve the same output but with
improved loading time. Examples like JPEG image files
mostly contains the name of the program name used to write
them. Similarly other file formats like GIF and PNG files can
be made smaller by making use of the way they are encoded.
Certain techniques like Huffman encoding, Arithmetic
encoding and Run length encoding can be used for the
compression.

2.3 Minified JavaScript and CSS files

These days most of the 3rd Party libraries and Frameworks
are written and packaged along with their minified versions.
These minified code are almost similar to the original code
with the unwanted items removed from the original doc.
Examples like min.js and min.css files are the same
representation of the JS and CSS files but with the spaces and
tabs removed from them and only retaining the useful code.

2.4 Progressive Rendering

Sometimes the content of the web pages involves too many
components which gets revealed upon various actions by the
user. These contents most of the time are not required to be
rendered at the same time as other core components and
hence can be processed in intervals or only upon their
requirement. Some of the examples of this may be Showing
rest of the Web Page Contents upon scrolling, Button
triggered data rending via AJAX calls etc.

Thus Progressive Rendering can bring down the number of
components being rendered at the moment of time and
hence improves the response time of the websites.

3. CONCLUSION

The size of the average web page has more than tripled in
the last five years and the number of external objects has
almost doubled. Although broadband users encountered
quicker loading times, users of narrowband were left behind.
For the typical web page hosting more than 50 external
objects, most web page delays are now controlled by
object overhead.

Lesser the number of HTTP requests, lesser multimedia
contents combining JavaScript or CSS, while still retaining
the attractiveness of the web page reduces the load on the
rendering of the web page. Maintaining this trade-off is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7085

really crucial for creating a good content for the web site. It
is evident that most of the website which shows minimal
required data with the most attractive designs and
animation attracts the users view a lot.

4. REFERENCES

[1] V. Jain and A. Kolambkar, "Modeling Web Attachment
Storage for Web Applications," 2014 21st Asia-Pacific
Software Engineering Conference, Jeju, 2014, pp. 98-102,
doi: 10.1109/APSEC.2014.24.

[2] G. Jiang and S. Jiang, "A Quick Testing Model of Web
Performance Based on Testing Flow and its Application,"
2009 Sixth Web Information Systems and Applications
Conference, Xuzhou, Jiangsu, 2009, pp. 57-61, doi:
10.1109/WISA.2009.16.

[3] K. Gupta and M. Mathuria, "Improving performance of
web application approaches using connection pooling," 2017
International conference of Electronics, Communication and
Aerospace Technology (ICECA), Coimbatore, 2017, pp. 355-
358, doi: 10.1109/ICECA.2017.8212833.

[4] T. Gao, Y. Ge, G. Wu and J. Ni, "A Reactivity-based
Framework of Automated Performance Testing for Web
Applications," 2010 Ninth International Symposium on
Distributed Computing and Applications to Business,
Engineering and Science, Hong Kong, 2010, pp. 593-597, doi:
10.1109/DCABES.2010.127.

[5] A. Puliafito, M. Scarpa, A. Zaia and M. Villari , "A
modeling technique for the performance analysis of Web
searching applications," in IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 11, pp. 1339-
1356, Nov. 2004, doi: 10.1109/TKDE.2004.65.

[6] Z. Zhu, X. Fei and Y. Gaizhen, "Research on Performance
Optimization for the Web-Based University Educational
Management Information System," 2011 International
Conference on Intelligence Science and Information
Engineering, Wuhan, 2011, pp. 261-264, doi:
10.1109/ISIE.2011.53.

 [7] J. Chen and S. Yang, "A Study of Security and
Performance Issues in Designing Web-based Applications,"
IEEE International Conference on e-Business Engineering
(ICEBE'07), Hong Kong, 2007, pp. 81-88, doi:
10.1109/ICEBE.2007.44.

 [8] P. Davies, N. Naik, D. Newell, P. Jenkins, and, "Native
Web Communication Protocols and Their Effects on the
Performance of Web Services and Systems," 2016 IEEE
International Conference on Computer and Information
Technology (CIT), Nadi, 2016, pp. 219-225, doi:
10.1109/CIT.2016.100.

