
    International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 
       Volume: 07 Issue: 05 | May 2020                   www.irjet.net                                                                   p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 6030 
 

FPGA-based Sandbox Platform for Hardware Accelerators  

Vidhath BL1      Harini V2 

Department of Electronics     Department of Computer 

and Communications Engineering               Science and Engineering 

RV College of Engineering             RV College of Engineering 

Bangalore, India             Bangalore, India 

 

                                 Dr. Govinda Raju M3                 Sandhya S4 

Department of Electronics     Department of Computer 

and Communications Engineering               Science and Engineering 

RV College of Engineering             RV College of Engineering 

Bangalore, India             Bangalore, India 

------------------------------------------------------------------***------------------------------------------------------------- 

Abstract: Modern software development often relies on 
source version control methodologies to realise a robust 
model for the development, testing and release of new 
features in production, where there is a clear isolation of 
testing environments from productive ones while also 
expediting integration of features from one environment 
into another. Using an early-stage meta-modelling 
approach, such a system may be explored in hardware 
development as well, enabling iterative hardware 
development in sandbox conditions, module reusability 
and easy collaborative development, thereby 
accelerating the hardware design process. This paper 
proposes to develop a Field Programmable Gate Array 
(FPGA) based platform that forms a flexible testing 
ground to assess and iterate over various design 
configurations as in sandbox conditions. An automated 
system of datasheet-like documentation and the user-
rule-based generation of meaningful derivatives from 
the designs constructed on the platform is also proposed 
so as to enhance reusability and accelerate development. 

Keywords: Intellectual Property (IP), Serial 
Peripheral Interface (SPI), Field Programmable Gate 
Array (FPGA), Metamodelling 

1. INTRODUCTION 

Hardware acceleration is a term used to describe tasks 
being offloaded to devices which specialize in a 
particular set of operations [1]. While traditional designs 
are fine in most general use cases, there are others 
where it might be optimal to utilize the specific modules 
i.e. accelerators. This specificity results in their designs 
being highly complex, and any further development or 
redesign requires in-depth analysis of design, right from 
the simplest of logical entities. Consequently, the 
conventional design processes for hardware accelerator 
Intellectual Property (IPs) is elaborate in terms of both 

time and resources. Therefore, in the case of hardware 
accelerators, every iteration of redesign is very 
expensive. Hence it is evident that extensive testing of 
such IPs is to be performed before integrating them into 
the main design of a component. Thus effective testing 
methods and quicker redesign flows are needed to 
shorten the complex process of hardware accelerator 
design. [2] 

Drawing from the concept of a sandbox which is a testing 
environment that isolates untested module changes and 
outright experimentation from the production 
environment, the paper proposes a platform wherein 
modules in production and modules under testing are 
isolated in hardware while being part of the same 
system in terms of design flow. 

2. RELATED WORK 

In today’s embedded system growth, architecture 
efficiency remains a major issue. A positive step to boost 
the design process is domain-specific languages (DSLs). 
The incoherent syntax in various DSLs, however, 
negatively affects any gained productivity during system 
development and manual DSL development. In this 
report they propose to produce Python-embedded DSLs 
in a metamodel-based framework. By identifying basic 
blocks a target metamodel abstracts the models. Their 
framework generates an expressive DSL that automates 
model building and allows data flow programming with 
additional configuration. A ”one-language ecosystem” 
was explored by the authors in [3], with the created 
DSLs describing RTL and firmware as well as formal 
properties by using the proposed framework on various 
meta-models. A chip-based device (SoC) consisting of an 
RTL code and a firmware stack is generated as proof of 
concept and formal properties are automatically 
checked. In order to construct the RTL DSL, this 



    International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 
       Volume: 07 Issue: 05 | May 2020                   www.irjet.net                                                                   p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 6031 
 

generative method results in a factor-of-six time 
reduction [4]. 

Metamodelling-based hardware generation methods are 
now exponentially relevant for heterogeneous hardware 
(HW) and software (SW) systems. The key design issues 
include the need for executable specifications, 
performance analysis and early design integration 
possibilities. Recent progress in hardware-software co-
specification methodologies has been inspired by 
inherent characteristics of hardware definition 
languages; for example, VHDL implements abstract 
datasets and control mechanisms that may be paralleled 
in various programming languages using a robust object 
model. Using such a basis, various hardware generation 
frameworks have been developed over the past years in 
interests of maximizing the utility of the valuable pre-
RTL architectural design exploration period by enabling 
early and swift RTL code generation. Three of these 
methods today are industrial, scholarly and potentially 
relevant: Bluespec, Genesis2 and Chisel. Chisel is a 
repository for the Scala language in general 
programming [5]. As Chisel is Scala-based, it does not 
use any current HDL framework or syntax, but instead 
the Scala compiler and runtime environment as well as 
its syntax and operators. Bluespec’s BSV (Bluespec 
SystemVerilog) is another hardware generation 
framework, initially established as a Haskell library. It 
presents an object model corresponding to hardware 
modules, enforcing atomic actions to impart behaviour 
to the module in a manner that simplifies verification 
later on in the hardware development process [6]. 
Finally, Genesis2 is a framework that enables the 
generation of reconfigurable, architectural design 
templates utilizing Perl as the base compiler and runtime 
environment [7]. 

Therefore, there is a significant amount of foundational 
literature and industrial precedent laying out 
frameworks and methodologies for hardware generation 
and the associated design flows. However, there is a 
present lack of a dedicated methodology that utilizes a 
hardware generation platform. Leveraging current 
trends in meta-modelling in the hardware domain, we 
propose a self-documenting sandbox platform to enable 
the quick testing and development of hardware 
accelerators to expedite architectural exploration, and 
introduce component modularity and reusability as with 
the development of software. It is to be noted that this 
paper focuses on the system methodology of the 
previously described sandbox platform rather than the 
underlying hardware generation framework that it will 
be implemented over. 

 

 

3. SYSTEM DEVELOPMENT 

For generating the RTL for SPI peripheral and register 
interface, the framework is based on two MoTs. 
Metamodeling enables easily adaptable SPI circuitry. 
Various configurations of SPI are needed for different 
applications. Large or minor changes in the HW 
components can occur depending upon the MoT. In the 
second MoT, the register interface hardware is created 
based on the frame format specification. The hardware 
designs discussed here are symbolic configurations only. 
This chapter discusses the SPI peripheral definition, the 
control and IP logic, and the configuration of these 
modules. 

A. Methodology 

The proposed platform is generated using a meta-
modelling based hardware design tool. This tool aims to 
bridge the gap between hardware and software design, 
taking advantage of trends in both areas to work with 
higher level description languages. Shifting toward a 
software-oriented approach supports the concept of 
abstraction and inheritance, which in turn enables the 
generic specification of modules [8]. With such a generic 
module in place, the addition of a component translates 
merely to the instantiation and configuration of the 
component in the platform’s template as opposed to re-
writing the Register Transfer Level (RTL) code. This 
facilitates rapid modification/redesign, hence drastically 
reducing development time. 

The proposed platform consists of the following 
components on an FPGA: a Serial Peripheral Interface 
(SPI) slave peripheral for communication and the IPs 
under testing. These are represented in Fig,1. 

The novelty of this platform is the configurable 
communication protocol to adapt to the requirements of 
the IPs under testing. From high level customisations 
like the frame format, to the very minute details like 
clock polarity and phase are made possible on this 
platform. 

 

Fig 1: FPGA Testing Platform 



    International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 
       Volume: 07 Issue: 05 | May 2020                   www.irjet.net                                                                   p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 6032 
 

With the platform in place, testing is done by interfacing 
it with an external master (e.g. microcontroller) on 
which the entire algorithm is written, which will 
potentially test the integration of the IP into the system. 
Flow of execution is transferred to the FPGA platform 
when the operation to be accelerated by the IP under 
testing is reached. Therefore with this arrangement it is 
made possible to test the functionality of an IP as part of 
a system even when the IP is not physically fabricated 
onto the master hardware. 

B. Design Specification 

The platform is dependent on two templates for 
generating RTL one for the SPI Peripheral and another 
for the Register interface. Metamodeling enables the SPI 
hardware to be highly customizable. For different 
applications different SPIs are needed. Depending on the 
template, large or small changes can occur in the HW 
components. In the second template, based on the frame 
format specification, register interface hardware is 
generated. The hardware concepts which are presented 
in this section are only representative layouts. With this 
in mind the following chapter explains the concept of the 
SPI peripheral, the control and IP logic, and the interface 
between these modules. 

The FPGA platform consists of a Serial Peripheral 
Interface (SPI) slave peripheral, register interface logic 
and a state machine to control data flow between IPs 
under testing, as depicted in Fig.2. The synthesizable 
Register Transfer Level (RTL) is generated by specifying 
configuration in the template created for the FPGA 
platform and SPI communication interface in the 
metamodeling hardware generation tool. In order to 
cater to the various IPs being tested, the communication 
protocol is also widely configurable. From high level 
customisations like the frame format, to very minute 
details like clock polarity and phase. Finally, the IPs 
under testing are integrated into a top level Finite State 
Machine (FSM) which controls the flow of execution. 

 

Fig 2: System Block Diagram 
 
 

C. Design Extensions 

Tests take effect on the device by interfacing it with an 
external master (e.g. microcontroller), which includes 
the full algorithm to test functionality of the IP.  

(a) Interface with XMC 

The above generated RTL is synthesized and burnt onto 
an Arty A7-35T FPGA. This FPGA is used as the system 
clock frequency is much superior to that of the XMC 
Microcontroller on which the main algorithm is 
executed. To see best improvement in results, the 
accelerator IPs are run on this board. The firmware and 
driver code for the XMC Controller is also auto-generated 
using the same metamodelling based hardware tool [9] 
which generates the RTL of the platform. Therefore the 
system diagram now consists of an intermediate layer 
between the FPGA and XMC Controller that fills in the 
firmware and driver code for the XMC (as shown in 
Fig.3) 

 

Fig 3: Accelerator Testing Setup 

(b) Automatic datasheet and derivative generation 

Since the metamodelling-based hardware generation 
tool enables numerous variations in hardware 
specification, it is critical to support the same with 
meaningful documentation to provide the users of the 
platform the ease of referring to a datasheet to generate 
the specific hardware required for their application. The 
basic internal flow of the documentation generation 
process is shown in Fig 4. 

 



    International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 
       Volume: 07 Issue: 05 | May 2020                   www.irjet.net                                                                   p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 6033 
 

 

Fig 4: Flow of Datasheet Generator 

There are two parts to a datasheet: the port description 
and the schematic. The port description is derived from 
attribute and class description from the template fed to 
the metamodelling framework.  

The schematic is generated using Nlview (an automatic 
schematic diagram generation engine), based on an 
intermediate model file used by the RTL generators. An 
example of the documentation and schematic is shown in 
Fig.5. 

The generated documentation consists of attribute 
descriptions and schematics that guide the users on 
attaining their requirements using the template. A 
sample document with schematic is shown in Fig 5. 

 

Fig 5(a): Attributes/components of the hardware specification are 
automatically documented in a HTML page. 

Fig 5(b): Schematic diagrams are created using the RTL 
generated for the hardware specification 

4. RESULTS 

Simulation tests (as shown in Fig 7) were performed on 
the FPGA platform to detect register and line delays to 
synchronise the SPI communication with the XMC. To 
improve accuracy, register enables are controlled using a 
baud rate generator which precisely gives a pulse when 
data is available at the input of the registers [10]. 
Additionally the interface to synthesize the RTL was 
tested with various combinations of IPs as shown in Fig 
6. 

 

Fig 6: GUI to generate specific hardware using template 



    International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 
       Volume: 07 Issue: 05 | May 2020                   www.irjet.net                                                                   p-ISSN: 2395-0072 

 

© 2020, IRJET      |       Impact Factor value: 7.529      |       ISO 9001:2008 Certified Journal       |     Page 6034 
 

Fig 7: Validating synthesized hardware in Vivado 

An FPGA-based sandbox testing platform as described 
has been successfully designed, developed and tested, 
with the RTL generated by the platform synthesized and 
tested on an Arty A7-35T FPGA. An accompanying 
framework of automated documentation of hardware 
modules through the development process has been 
integrated and tested as well.  

Future developments would chiefly involve testing the 
viability of the platform in production architectural 
design workflows and augment the versatility of the 
system for more complex hardware generation 
problems. 

REFERENCES 

[1] Tom Dillon, Jeremy Paatela, Guenter Dannoritzer, 
Scott Hussong, “Accelerating Algorithm Implementation 
in FPGA/ASIC Using Python”, Dillon Engineering, Inc. 
[2] Jianwen Zhu, “MetaRTL: Raising the Abstraction 
Level of RTL Design”, Technical Report ECE-00-xx, 
Electrical and Computer Engineering, University of 
Toronto 
[3] G. Z. Derek Lockhart and C. Batten, “PyMTL A Unified 
Framework for Vertically Integrated Computer 
Architecture Research”, International Symposium 
onMicroarchitecture (MICRO47), 2014. 
[4] Z. Han et al, “Towards a PythonBased One Language 
Ecosystem for Embedded Systems Automation”, IEEE 
Nordic Circuits and Systems Conference, 2019 
[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup 
Lee, Andrew Waterman, Rimas Avižienis, John 
Wawrzynek, Krste Asanovic, “Chisel: Constructing 
Hardware in a Scala Embedded Language”, EECS 
Department, UC Berkeley, 2015 
[6] R. S. Nikhil and K. R. Czeck, “BSV by Example”, 
Bluespec, 2010 
[7] O. Shacham et al., “Avoiding Game Over: Bringing 
Design to the Next Level”, Design Automation 
Conference (DAC), 2012 
[8] Frank P. Coyle and Mitchell A. Thornton, “From UML 
to HDL: A Model Driven Architectural Approach to 
Hardware-Software Co-Design”, Technical Report, 
Computer Science and Engineering Dept. Southern 
Methodist University 

[9] Drechsler et al, “Efficient Automatic Visualization of 
SystemC Designs”, Forum on specification and Design 
Languages, FDL 2003, September 23-26, 2003, Frankfurt 
[10] T Liu and Y Wang, "IP design of universal multiple 
devices SPI interface," 2011 IEEE International 
Conference on Anti-Counterfeiting, Security and 
Identification 


