
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5065

Addressing the Limitations of React JS

Vishal Gowda1, Shanta Rangaswamy2

1Vishal Gowda, Dept. of CSE, R.V College of Engineering, Karnataka, India
2Shanta Rangaswamy, Associate Professor, Dept. of CSE, R.V College of Engineering, Karnataka, India

---***---

Abstract - React is a web framework that has better
features compared to other similar frameworks such as
Angular, Vue. This is due to its implementation of Virtual DOM;
whose goal is to enhance the overall capability of the
application. However, there are some things that should be
kept in mind before designing applications which if ignored,
the problems that may occur will lead to performance issues.
Some of the commonly faced issues are component re-
rendering, lag due to processing large data sets in a single
stretch, application lag due to background computations
being run, etc. This paper provides different ways to overcome
such issues, thus enhancing the performance of React in a
production environment.

Key Words: React, State, Props, Components,
Multithreading, Optimization, Performance, JavaScript.

1.INTRODUCTION

React is a web framework that was designed to address the
performance issues in a web application. It uses virtual DOM
which decides if the component must be reloaded based on
the current state of the component and any changes that
occur. This helps to prevent the application from re-
rendering if not required. React has two-way data flow
which controls the flow of the data inside the application
which makes tracking easier and improves propagation and
the stability.

The props and states of the component are two parameters
that determine when a component should re-render in the
application [1]. When there is a change or when a parent
passes a new property to the child, the React DOM compares
the new values to the previous values and re-renders only if
there is a difference.

Figure 1: Component Tree for rendering a react component

Consider the hierarchy in Fig 1. For some change in the
component C1, the component C1 decided to re-render. Now
React checks the children in the subtrees of component C1 in
a recursive manner until all the components in the subtree
have been updated based on the value generated by the
SCU() method.

The components in the tree are not forced to re-render by
the parent component. It means that the children in that
subtree will be evaluated. From the figure, it is notable that,
since SCU of C1 is true, the subtrees C2 and C3 are checked.
Since SCU of C3 is true, its children are evaluated, whereas
the components in the other subtree C2 are not evaluated
since SCU for C2 is false and similarly the process is
continued. Finally, the components C6, C3, and C1 are re-
rendered.

This type of re-rendering does not cause any issues in the
case of a simple application, but in complex applications with
many components, this re-rendering causes many
performance issues.

And relying only on the React Virtual DOM comparison is not
enough. Instead, a few additional measures are required to
re-render the components only when required.

The following sections describe a few ways of improving the
performance of React Applications.

2. OPTIMIZING THE REACT APP PERFORMANCE

2.1 Search Optimization

 Searching large data sets involving millions of objects can
consume a lot of time. If data received from the server is not
in order, the time complexity will be O(n). Also, to create a
single data structure of JSON objects causes a problem with
memory overloading. Trying to build an application with
100,000 array objects may cause the application to fail. The
NPM (Node Package Manager) throws a memory error. To fix
this, data can be split into chunks of fixed sizes and use
hashing, with the search attribute as the key.

In this case, the Hash generated using each element is used as
the key to point to the Object [2]. Hence when there is a need
to search the object based on its name, the Hash for the
corresponding string is computed and used to find the object.
The complexity for the search will be reduced to O (1).

It can be noted that since we have used hash technique, if
data is searched using query string "user", then results will
not be found. This is due to Hash("user") and Hash("user1")

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5066

being different values. Hence, the computation of some more
hashes by adding to the search string further is required.

For example, if data consists of string "user", then it is likely
that strings such as "user1", "user2", "userx", etc. are present
in the data set. Therefore, for the search string "user" building
more such strings and looking up the corresponding Hashes
in the Hashtable is a good solution.

The time complexity of these operations is k * O (1). Where k
is the number of combinations of the search string. In
comparison to O (n) and even O (n log n) approaches, this
provides better performance [3].

If the data set consists of the following strings as Object
attributes:

 "user", "user1", "user2", . . ., "user22", . . .

Assume that the query string is "user".

The object corresponding to the hash can be retrieved, but
performing searches in real time, there is also the need for
retrieving related data as well. i.e. expecting the search to get
the objects corresponding to strings "user1", "user2". But this
is impossible with simple Hashing.

Building similar strings and compute the hashes to use them
for quickly looking up objects. So, in this case, we can
construct the following strings:

 "user1", "user2", . . ., "userx"

And looking in the HashTable using the strings one at a time,
when a string, say "userx" is not found in the HashTable,
strings in a new form, say "userxx" can be taken into
consideration.

In the same way, few other string combinations can be built.
The number of combinations built determines the complexity
of the algorithm. In sequential search technique, the time
complexity will O (10^n) (assuming the length of the data set
to be 10^n) whereas in this case, the time complexity is k * O
(1), where k depends on the search string.

This is more like an absolute search, where data that
resembles the search query most accurately is fetched, rather
than fetching all data with slight resemblance. This is the
tradeoff that reduces computation time [4].

But the main disadvantage is to fix the search attribute. Since
the Hash Table is built using a specific object attribute, it is
not possible to change unless we regenerate the HashTable
using a different attribute. Although, if the search attribute is
fixed, then this approach will be useful.

2.2 Utilize Existing Component Instances

 For example, let’s consider the size of the data set in the
order of millions. Creating the instances at once will slow
down the application.

To avoid this, a fixed number of instances are created and re-
rendered with different Props whenever required.

For example, about 1000 objects can be created initially and
whenever the user makes a request, references of the next
1000 objects are passed to the existing component instances

[5]. It is recommended to pass the references to the object
instances, as performing a copy of the objects will result in
duplicating the instances and waste memory.

2.3 Reduce the number of State and Prop variables

 This is an important measure to be taken. By reducing the
number of State and Prop variables, the chances of the re-
renders of the component that are not necessary can be
reduced. Also, frequent and unnecessary changes to the State
and the Props can be harmful to the performance of an
application. The state must be updated only if it has a visual
impact on the application and if not, the state must be
updated only at the end [6].

The component could be stopped from rendering until the
essential data has been received. This is configured by going
over the SCU(props, state) method of the component. This
method decides if the component should be rendered or not.

Consider a situation where a component receives data by
making a REST API call to a server and a few local props
received from the other components of the application. The
component is rendered when it receives the server data. If
data from the server is received before the props from other
components, this would cause re-render. Instead, checks in
the SCU() method can be added to verify the data, so that this
problem can be successfully avoided. It helps to improve the
application start-up render time and therefore improve
performance [7].

2.4 Splitting the main component into individual
components

 In a code snippet, the component renders a table where
clicking on any row or column would set that element to the
state. This means that each time the cell is clicked, the entire
table re-renders which causes performance problems. This is
negligible if the size of the data used is small. But in real time
applications, the size of data can be huge and rendering the
entire table on every click is very inefficient [8].

A better way is by isolating each table row or column as an
independent component and enable these components to
listen and act on events independently. In this way, every
time an event occurs, only one row or column will have to be
re-rendered instead of re-rendering the entire table.

This can summarize be summarized as:

 Main Component

This component is responsible for creating and managing the
child components and does not listen for all the events of the
children unless the child sends a prop to the parent.

 Subcomponent

This is an independent component, that is made to handle all
the occurring events, without having to interact with other
components. Here, each row or column component will have
its own state and every time there is a change, react virtual
DOM will only compare the state for one particular row or
column and re-render it if required. This is an improvement

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5067

over the previous case, where an entire table was re-
rendered.

Since React provides two-way data binding, an additional
event is not required in the child element to publish the result
back to the parent.

2.5 Multithreading

 In most cases, web browsers spawn one thread per tab
opened and this thread is responsible for all the operations
performed in the application. Hence, if there are many
computations to be performed, the thread would have to stop
all other operations, and this leads to unresponsiveness in the
application during this time [9].

But recently, Google and Mozilla have introduced Web
workers to make browsers more powerful. A web worker is a
JavaScript program which runs on a separate thread in
parallel to the main thread therefore enabling us to
implement multithreading in the application and use parallel
method of execution [10].

Examples of operations that could be performed are:

• Data and web page caching.

• Image manipulation and encoding.

• Canvas drawing and image filtering.

• Network polling and web sockets.

• Background I/O operations.

• Video/Audio buffering and analysis.

• Virtual DOM diffing.

• Local database operations.

• Computationally intensive data operations.

Consider a case where there is a need for filtering the data in
the application. If the size of data used by the application is
small, multiple need not be running. But if the size of data is
very large, then it is not efficient for a single thread to filter
the entire data. In these cases, multiple web workers are
created and assigned a specific portion of the entire data to
each web worker. Each worker would now filter the portion
of data assigned to it and store it in a specific space. When all
the web workers complete their task, the main application
thread just merges the pieces of the filtered data and obtains
a result [11].

In the same way, web workers can be used to perform other
background time-consuming tasks, while the application
functions well without any performance degradation.

It is important to note that any time a web worker is created,
it takes control of some system resources and these web
workers last until the main web worker dies. So, it is
important to make sure that we do not overkill by creating
many web workers. Browsers such as Mozilla Firefox support
up to 512 web workers running simultaneously.

3. CONCLUSIONS

React is a very useful framework having its own way of
tacking performance issues that Web Applications
commonly face. But in standalone applications, the
performance can still be degraded when complex
applications are required to be designed where the
application deals with a lot of data processing [12]. This may
lead to the application response issues and lag. This is a very
common problem in large scale Enterprise Applications. This
paper proposes some ways of tackling such problems within
the web application.

The methods described are aimed at eliminating redundant
computations and help in improving the performance of the
application. While some techniques explained are specific to
React framework, other techniques such as search
optimization and multithreading can be implemented in any
framework [13].

REFERENCES

[1] ReactJS Docs reactjs.org/docs, “Optimizing
Performance.” (2016).

[2] C. Wohlie et al., "Experimenting in Software
Engineering" in, Springer, 2012. (pp. 1-10).

[3] S. Fröstl, Sebastian. "AngularJS performance tuning for
long lists." tech. small-improvements.com (2013).

[4] Noam Elboim, blog.medium.com, "How to greatly
improve your React App performance." (2018).

[5] Yu Yao, Jie Xia, "Analysis and Research on the
performance Optimization of Web Application system in
high Concurrency Environment" in, IEEE, 2016.

[6] Darrel Greenhill, Jack Francik, Jay Kiruthika, Souheil
Khaddaj. “UX Design in Web applications: An approach
to improve reuse in web applications”, In Web
Engineering (pp. 335-352). Springer, Berlin, Heidelberg,
2016.

[7] A. Javeed, "Performance Optimization Techniques for
ReactJS," (2019) IEEE International Conference on
Electrical, Computer and Communication Technologies
(ICECCT), Coimbatore, India, 2019, pp. 1-5.

[8] C. Ebert, M. Kuhrmann and R. Prikladnicki, "Global
Software Engineering: An Industry Perspective," in IEEE
Software, vol. 33, no. 1, pp. 105-108, Jan.-Feb. 2016.

[9] A. Singh, P. Chawla, K. Singh and A. K. Singh,
"Formulating an MVC Framework for Web Development
in React and Java “, 2018 2nd International Conference
on Trends in Electronics and Informatics (ICOEI),
Tirunelveli, 2018, pp. 926-929.

[10] Network, Mozilla Developer. "Web Workers API."
(2015).

[11] Q. Yunrui, "Front-End and Back-End Separation for
Warehouse Management System," 2018 11th
International Conference on Intelligent Computation
Technology and Automation (ICICTA), Changsha, 2018,
pp. 204-208.

[12] H. Brito, A. Gomes, Á. Santos and J. Bernardino,
"JavaScript in mobile applications: React native vs ionic
vs NativeScript vs native development," 2018 13th

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5068

Iberian Conference on Information Systems and
Technologies (CISTI), Caceres, 2018, pp. 1-6.

[13] S. Dhawan and R. Kumar, "Analyzing Performance of
Web-Based Metrics for Evaluating Reliability and
Maintainability of Hypermedia Applications," 2008
Third International Conference on Broadband
Communications, Information Technology & Biomedical
Applications, Gauteng, 2008, pp. 376-383.

