
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3783

Analysis of Android Custom Kernels

Surya M1, Rajendra M 2

1Dept. of CSE, Atria Institute of Technology, Karnataka, India
2Asst. Professor, Dept. of CSE, Atria Institute of Technology, Karnataka, India

---***--

Abstract - Android is the most popular mobile platform
which is based on the Linux kernel. But their devices don't age
well compared to the competition. Smartphones phones ship
with a stock kernel configured to provide balanced
performance. Smartphone enthusiasts have come up with
several techniques to boost the efficiency of mobile systems to
make smartphones more effective. One such method is
optimizing the kernel which can potentially accelerate the
system performance. A community of smartphone enthusiasts
modify the kernel from the kernel sources and release a more
performance oriented custom kernel. In this paper we analyze
and improve the performance of an Android phone using these
custom kernels. We conduct experiments on POCO F1, with
four different kernels, namely Lineage stock kernel, Illusion v5
kernel, Lawrun v10 kernel and Arter97 kernel. Results show
that system performance improves by 10% to 30%.
Specifically, we measure overall performance improvements of
key Android system components such as multithreading and
task scheduling, Binder, and storage and file systems using
tools like Antutu and Geekbench. The custom kernels usually
overclock the CPU and GP which showed significant
performance improvements and stable functioning with a
minor increase in device temperature and reduced battery life.

Key Words: Android, Linux, Kernels, Performance,
Lineage, Illusion, Lawrun, Arter97, Antutu, Geekbench.

1. INTRODUCTION

 Since the release of Apple’s first iPhone in 2007, the
smartphone market has grown very rapidly. The most
popular mobile operating system is the Android introduced
by Google. The Android OS is based on the Linux kernel and
was first released in 2008. It is an open-source platform
backed by Google and served by major hardware and
software developers. Android’s worldwide market share has
risen explosively. Because of the open nature of Android,
many third-party applications are currently available. But
the main problem of android ecosystem is that the phones
don’t get updates and there is a lack of focus on optimizing
the OS and apps for older devices. Also considering the fact
that old phones with the stock kernel are configured to run
under balanced more. To counter this smartphone lovers are
enthusiastic about ‘tuning up’ their mobile phones and
increasing their usability. Some want to improve
performance by speeding up the phone’s processor.

Another method is by making more memory available to run
apps faster. Others want to upgrade older models with
newer versions of the operating system using custom roms.

A specific set of smartphone/tech enthusiasts have formed a
community in this niche market of getting maximum
performance out of these smartphones. In this paper we
analyze and benchmark custom kernels for POCO F1 and
how the kernel performance improves the overall usage and
efficiency of the device. This brings about more lifetime and
usability of the device.

2. ANDROID ARCHITECTURE

From an architecture point of view, the Android operating

system is divided into four layers: the kernel layer, libraries

and runtime layer, applications framework layer, and

applications layer. Android kernel is a modified version of

Linux kernel, which is updated from time to time with

different versions of Android. The libraries provide support

for graphics, media capabilities, and data storage. Android

runtime, embedded in the libraries layer, contains the Dalvik

virtual machine to power the applications .As a replacement

of Dalvik, Android introduced its new Android RunTime

(ART) with ahead-of-time (AOT) compilation, which

improves performance. All applications use the applications

framework API for accessing the lowest level of the

architecture. The layers consist of multiple program modules

such that the operating system, middle-ware and other

central applications. Each upper layer avails the services of

its lower layer.

3. KERNEL LAYER

 The kernel used by Android Operating System is a modified

version of Linux Kernel to carry out some special

requirements of the platform. Linux was chosen since it is

open source, and has verified pathway evidence. Drivers are

needed to be rewritten in various cases. Linux kernel

provides mechanisms for networking, drivers, virtual

memory management and power management. It works at

ease with hardware and also holds all the necessary

hardware drivers. Drivers control and are in touch with

hardware. For example, all devices contain Bluetooth

hardware, so the kernel must also provide a Bluetooth driver

for Bluetooth hardware to communicate with. Linux kernel is

used for process management, memory management,

networking, security settings etc.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3784

4. CUSTOM KERNELS

 The kernel which comes with Stock ROM is stable and lives
up to what the OEM promises. However, as Android is all
about customization, after Custom ROMs, Custom Kernels
are the go-to choice among the users. Android is a famous
operating system that features a lot of custom kernels out
there for almost every phone nowadays. Custom Kernels not
only offer security updates, but also various improvements
over the Stock Kernel.

However, the kernel has complete control over the system.
That means that not only a Custom Kernel can enhance your
experience but can also damage your system if tinkered
wrongly.

The device manufactures release the kernel sources for the
device on top of which customization or modifications are
done and compiled to release a custom kernel.

Custom kernels are better in more than a few ways with
android. You can tweak various features like:

1. CPU, GPU and MEMORY overclocking.
2. How busy the CPU should be before it enables extra

cores that it normally has disabled to save battery.
3. The CPU governor (which determines how quickly it

tends to ramp up the frequency or not)
4. Change the voltage of the CPU during all possible

frequencies.
5. Enable USB fast charge
6. Configure the I/O scheduler.
7. Overclock Display refresh rates.

There are different custom kernels, giving you a plethora of
choices to pick from. From a high-performance, overclocked
gaming kernel, or an under-clocked battery booster, or go
with a fair share of both. If you can’t decide, you can very
well go ahead and build your own custom kernel with the
features you like if the kernel sources are available.

Kernels used for analyzing system performance are:

 Illusion: Compiled with AOSP clang, support for wireguard
and westwood as default TCP congestion control algorithm
and some standard governors.

 Arter 97: Compiled with latest toolchains, Permissive
SELinux status while passing SafetyNet and still keeping
optimizations from Stock Kernel are some of the highlighted
features of this kernel
LawRun: Compiled with android gcc, Permissive SELinux

with a variety of CPU and I/O governors. With support for

features in Kali Nethunter.

5. EXPERIMENT

5.1 TOOLS NEEDED

The tools needed for flashing/installing custom kernel, root
access and benchmarking are as follows:

1. UBUNTU OS: A Debian Linux distribution.

2. FASTBOOT: Android flashing and booting utility.

3. TWRP: TeamWin Recovery Project is a touch based
open source recovery image for android devices.
Used to flash new software images in various
android partitions and many other things such as
formatting a partition, debugging etc.

4. MAGISK: An open source systemless rooting
solution for Android based on phh’s SuperUser.

5. FRANCO KERNEL MANAGER: A kernel management
toolbox.

6. ANTUTU: An all-in-one benchmark tool designed to
run tests on a device's CPU, GPU, memory and
storage.

7. GEEKBENCH: A cross-platform processor
benchmark tool.

The device used here is POCO F1 with Snapdragon
845(10nm) octa-core (4x2.8 GHz Kryo 385 Gold & 4x1.8 GHz
Kryo 385 Silver) with Adreno 630 GPU and UFS 2.1 Memory.

5.2 INSTALLING CUSTOM KERNEL

First, the bootloader of the device has to be unlocked. This
enables us to use a custom recovery image and install the
kernels and also gain root access.

[Step1: Preparation]

1. Install fastboot on Ubuntu/Windows.
2. Download TWRP recovery image, kernel zip and

Magisk zip
3. On the phone enable developer options by tapping

build number 5 times.
4. In developer options enable OEM UNLOCKING.
5. Reboot the phone into FASTBOOT MODE by

pressing volume up + power button.
6. Connect the phone in fastboot mode to the pc.
7. Run the command to unlock the bootloader.

fastboot oem unlock

8. Reboot into fastboot mode.

[Step2: Installing Custom recovery]

1. Check if the device is connected using the fastboot
command on the terminal.

fastboot devices

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3785

2. With the recovery file in the current working
directory install TWRP image.

fastboot flash recovery twrp.img

[Step3: Installing Kernel and Magisk]

1. Using the install option in twrp select the kernel zip
and then Magisk zip

2. Use the swipe to install option and wait for both the
zips to finish.

3. Reboot the phone.

[Step4: Kernel Manager]

1. Install Kernel Manager of any preference. We are
using the Franco kernel Manager from Play Store.

5.3 ANALYSIS PROCEDURE

We use Franco kernel manager to monitor system properties
when idle and active. Franco kernel has live monitor mode to
visualize the system status.

Steps followed:

1. Check Franco kernel manager to check kernel
status.

2. Run Antutu and Antutu 3D on the device.
3. Wait the temperature of the device to come back to

normal.
4. Run GeekBench.
5. Log the scores.

Antutu benchmarks:

1. CPU
2. GPU
3. MEMORY
4. UX

Geekbench Benchmarks:

1. Single-Core performance
2. Multi-Core performance

Governor set to schedutil for all the tests and all other kernel
parameters set to the default values of the custom kernel.
Tests were done with stable room temperature.

5.4 RESULT

The stock kernel has the lowest performance scores
compared to the custom kernels as expected.

The increase in the clock speed of the GPU and CPU with
different kernel sources saw a big boost in performance.
These scores are specific to the device and the chipset used
along with the kernel.

Table -1: Antutu Benchmark scores for POCO F1

POCO F1 - Antutu Benchmark
Kernel
Name

CPU
Score

GPU
Score

Memory
Score

UX
Score

Overall
Score

Stock 51767 69977 40908 30402 193054
Illusion 96607 123418 49159 56029 325213
Arter97 98473 127027 50508 58398 334406
LawRun 103819 140131 52613 56355 352918

Chart -1: Antutu Benchmark scores for POCO F1

Table -2: Geekbench Scores for POCO F1

Chart -2: Geekbench Scores for POCO F1

6. CONCLUSION

From the results it's very clear that stock kernels are not
focused for high performance and lean towards efficiency
and limited features. The custom kernels unlock a lot of
features which are made available only for some latest and
flagship counterparts like overclocking the display refresh
rate considering the fact that the hardware supports them.
For performance evaluation, we have collected benchmarks
for different kernels for key Android system components
such as multithreading and task scheduling, Binder, and
storage and file system. Experimental results show that the
average system performance speedups 10-30%.

POCO F1 - GeekBench
Kernel Name Single

Core
Multi
Core

Stock 276 1098
Illusion 522 2223
Arter97 523 2285
LawRun 520 2290

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3786

REFERENCES

[1] P. Yuan, Y. Guo, X. Chen and H. Mei, "Device-Specific

Linux Kernel Optimization for Android Smartphones,"
2018 6th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering
(MobileCloud), Bamberg, 2018, pp. 65-72.

[2] L. Corral, A. B. Georgiev, A. Janes and S. Kofler, "Energy-
Aware Performance Evaluation of Android Custom
Kernels," 2015 IEEE/ACM 4th International Workshop
on Green and Sustainable Software, Florence, 2015, pp.
1-7.

[3] Joo, B.-G & Kim, S.-M. (2012). A user's experience in
optimizing smartphone performance using overclocking
and memory cleaning techniques. 6. 127-138.

[4] Google Developers (2020) Android Platform, [online].
Available at:
https://developer.android.com/guide/platform

[5] akhilnarang (2020) Illusion Kernel, [online]. Available
at: https://forum.xda-developers.com/poco-
f1/development/derp-kernel-v1-0-gcc-7-4-9-133-
t3856615

[6] arter97 (2020) Arter97 Kernel, [online]. Available at:
https://forum.xda-developers.com/poco-
f1/development/arter97-kernel-poco-f1-t3919127

[7] negrroo (2020) LawRun Kernel, [online]. Available at:
https://forum.xda-developers.com/poco-
f1/development/kernel-lawrun-kernel-v3-t4037729.

