
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 147

NetReconner: An Innovative Method to Intrusion Detection using

Regular Expressions

Radhika Gupte1, Pranav Mundhe2, Kiran Tonpe3, Shruti Agrawal4

1B.E. Information Technology, Dept. of Information Technology, Vidyalankar Institute of Technology, Maharashtra,
India

2 B.E. Information Technology, Dept. of Information Technology, Vidyalankar Institute of Technology,
Maharashtra, India

3B.E. Information Technology, Dept. of Information Technology, Vidyalankar Institute of Technology, Maharashtra,
India

4Professor, Dept. of Information Technology, Vidyalankar Institute of Technology, Maharashtra, India
---***--

Abstract - Intrusion detection is an essential part of
Information Security, which plays a vital role in securing a
network or a system from attacks on the confidentiality,
integrity and availability of the system. An Intrusion Detection
System (IDS) is a tool used to monitor the network with the
purpose of detecting an attack on the system, which then
reports the network administrator about the potential
damage, so as to take appropriate measures. Network
Intrusion Detection System (NIDS), a category of IDS, focuses
on detection of network attacks and aims at securing the
entire network instead of securing a single host. This paper
describes complete working of NetReconner system.
NetReconner is a Regular Expression (RegEx) based NIDS that
captures packets from the network and compares the set of
RegEx with each line of the captured packets. This system
monitors the network continuously using a bash script. It uses
a tool called as tcpdump (a command line tool in Linux). The
output of tcpdump (the captured packets) is stored in a text
file. The bash script, at regular intervals, also calls the
detection engine which is programmed in Python3. The
detection engine uses a set Regular Expressions and compares
them with each line in the text file containing the captured
packet. NetReconner also provides a facility for the
administrator to add new RegEx for newly discovered network
attacks to the existing set of RegEx. This paper elaborates the
mechanism of NetReconner and discusses the results obtained
using it.

Key Words: Intrusion Detection System (IDS); Malicious
packets; Network attacks; Network security; Packet
capture; Regular Expressions (RegEx); Signatures.

1. INTRODUCTION

In the current era, larger volumes of data go through and
over the Internet every day. This makes the Internet a
potential pathway to intrude a network. Malicious users take
advantage of this pathway and carry out network attacks on
a target system or network. This can cause loss of huge
amounts of data or information and can prove disastrous
when it comes to sensitive Government information, data
related to financial sector and other such critical

information. To avoid such circumstances, network security
has become a necessity in most organizations and
institutions. The most common way attackers harm
computer systems, is by using malicious software, called
malwares. Malwares are a piece of software designed for
performing unethical activity to gain access to another
individual’s resource or to spy on them. Malwares can also
disrupt the functioning of the complete system. According to
the statistics report from Kaspersky’s Security Bulletin 2016
[1], 31.9% of user computers were subjected to at least one
Malware-class web attack over the year. Unauthorized users
in a network pose a threat to the system where they perform
network attacks to compromise the system or the services
provided by it over the network. These attacks are data
packets containing malicious codes in their payloads. These
malicious codes can be detected using regular expressions. A
regular expression (RegEx) is a sequence of characters used
to search a specific pattern in a text file or for input
validation under different applications. NetReconner is an
IDS that makes use of RegEx for pattern matching with the
captured packets’ data looking for a possible attack. As
stated in Guide to Intrusion Detection and Prevention
Systems (IDPS) [2], an Intrusion Detection System (IDS) is a
software that automates the intrusion detection where the
administrator monitors events occurring in a computer
system or network and analyses them for signs of possible
incidents that may qualify as violations or threats of
violations of computer security policies.

1.1 Detection Process

Capturing of packets from over the network is done using
a simple Linux command ‘tcpdump’. Tcpdump can also be
referred to as a tool for scanning the network for capturing
and analyzing data packets and has multiple real-time
applications. The tcpdump command is triggered by a bash
script at fixed intervals of time to enable continuous packet
capture. The packets captured are stored in and appended
into a text file on which the Detection Engine carries out the
pattern matching algorithm. The Detection Engine is also
triggered by the same bash script that triggers tcpdump
command causing minimal down time of the Engine and
enabling batch processing of the packets captured

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 148

meanwhile. If a line in the text file matches with a particular
RegEx from the existing set, an alert is generated identifying
the attack that has been occurred. NetReconner also provides
facility to the network administrator to add new RegEx to the
existing set, manually through a user interface.

2. LITERATURE SURVEY

Through this section, we summarize some of the existing
research work on intrusion detection systems.

In January 2016, Akash Garg et al. [3], has proposed a
system to improve performance of an existing intrusion
detection system. They have used a dataset to detect attacks
using Snort. Snort is a well-known network intrusion
detection system that audits network packets and compares
them with attack signatures. The complete performance
analysis of Snort is presented in this paper. Snort identifies
attacks even when the entire packet is not available to it. On
the other hand, there is a drawback in this system that Snort
generates false alerts or false alarms in considerable
amounts.

In May 2017, Abdullah H Almutairi1 et al. [4], has

proposed a solution to the problem of huge database size.
Signature based intrusion detection systems often suffer
from large number of signature patterns stored in database.
The idea of frequent-signature database is used to decrease
the database size, also resulting in improving the
performance of the system. This generates an alert very
quickly after a signature is triggered. In addition, the concept
of parallel processing is used with two small databases. This
will minimize the detection time. When the packet goes
through a network, it gets parsed by the databases for
matching. The scanning should be done on a separate
machine. The proposed system has four components:
detection engine, small databases to store the most
frequently used signatures, updating agent, and a
complementary database that stores the remaining
signatures. Detection engine captures an incoming packet,
then decodes it and extracts its features which could also be
considered as the packet signature. This is compared with
the signature database. If the database contains a match, the
engine will trigger an alert by displaying it. It also logs the
incident, disables the connection by forbidding all
succeeding packets from coming from that source. The
second component is the small databases containing the
most frequent attack signatures. The size of these databases
is smaller, compared to the complementary database and
this database can be adjusted according to network load or
administrator decision. The third component is the updating
agent, used to update the small databases with the most
frequent signatures and remove those signatures, either that
were not used over a time period or related to a malware
which depends on a vulnerability that has been predefined.
The fourth component is the complementary database

containing the remaining signatures. This database is larger
in size than the small databases and is used to detect
infrequent attacks. This module updates the small database
module over time. The proposed solution sets a priority for
each added signature in database. These priorities are ‘high’,
‘low’ and ‘medium’. These are like labels to the signatures.
The reason for assigning a priority to a signature is to know
if a specific signature is likely to occur in the network or not.
High priority signatures are kept in the smaller database,
while the complementary database stores low priority
signatures. Network administrator decides what to do with
medium priority signatures.

In November 2012, Prof. D. P. Gaikwad1 et al. [5], has

proposed Multithreaded design detection module. It is a
single process that decides whether a captured packet is
malicious or not. A single process works well when there is
not much traffic in the network. However, if the network is
flooded, it will slow down the detection speed or there is a
possibility of missing a potential attack due to dropping of
extra packets. To deal with this problem they used the
multithreaded design. This design keeps a two-variable
count. One variable is used to track the number of captured
packets and another variable keeps count of threads created
by the detection engine. The first variable can take some
maximum value that a single thread can handle at a time for
processing. When that value exceeds, a new thread will be
created to handle further packets. The concept of an agent is
used in their paper to describe the working of the system.
Components of agents are a frequent-attack signature
database, a detection engine and an updating module. In the
first component, incoming packets are checked against
attack signatures. This process is time consuming. To
overcome this flaw, they have used cache mechanism for
frequently triggered signatures, decreasing the response
time. Another module is the detection module that takes a
packet as an input and extracts its signature. This extracted
signature is then compared with all the signatures in cached
database to check for intrusion. If a match is found then that
packet is labelled as a malicious packet. The work of the
updating module is to keep the frequent-attack signature set
up to date. A variable is associated with each attack. That
variable is incremented whenever an attack signature is
triggered. The concept of DIDS (Distributed Intrusion
Detection System) is used here. A distributed IDS uses
multiple detection modules over a large network. All these
modules communicate with each other and send updates to a
central server. This makes the task of network administrator
and analysts easy and manageable. This allows them to
update distributed servers using single central server.

Osaghae [6] also proposed a similar model that decreases

the size of the main signature database. The model consists
of components such as a detection engine, a family malware
reduction buffer database engine, a scalable malware
signature database and a temporary database called the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 149

reduction buffer database. The working of these modules is
similar to the other modules explained before.

3. PROPOSED SYSTEM

In order to detect malicious activity in a network, there is a
need to monitor the network continuously. To achieve this,
capturing the packets flowing on the line is necessary. This is
done using TCPDUMP, a packet capture tool which is
available in all Linux and Unix based operating systems. It is
often used to help troubleshoot network issues and is also a
security tool. It is the most powerful and versatile tool that
includes many options and filters by using the ‘libpcap’
library to do this task. After capturing all data packets, the
result is stored in a simple flat file or a text file. The amount of
data packets in flat files depends on the activity performed on
the web. Then, the detection engine parses all the data
packets using Regular Expressions which are stored in flat
files based on attacks. Regular expression is a library in
Python programming language.

Regular expression library or RE specifies a set of strings
that matches it. The functions in this module are used to
check if a particular string matches with a given regular
expression or not. This flat file is used by Detection Engine for
parsing the data packets to generate alerts and log suspicious
activities.

Detailed explanation about modules in Fig 3.1 is given below.

1. Packet capture Module: TCPDUMP command/tool is used
for capturing data like header and payload in this module. It
captures all major protocol packets like TCP, UDP and DNS
requests. Following command is used for packet capture:

tcpdump -nnvvSs 1564 -A

2. Rules or RegEx set: A set of rules, written in regular
expressions that a detection engine uses to find typical
intrusive activity. These rules are stored in a specific
repository and are fetched to compare with captured data.

3. Detection engine: It consists of a Python script which is
used to check if a particular string matches with any of the
given regular expressions. Parsing through all data and then
applying Regular Expression set on each packet takes place in
the Detection Engine.

4. IMPLEMENTATION AND RESULTS

4.1 Implementation

The first module deals with packet capturing and
generating alerts for designated attacks carried out in a
network. Here the first module logs network traffic in a flat
file in order to find malicious packets in it. Detection engine
continuously parses through, the logged packets so that the
system remains active for all the time without allowing any
infected packets to escape. Now the generated alerts are
appended in different files based on the attack type. This
separates out the bad traffic so that the network
administrator can analyze the generated alerts. Detailed
packet information can tell a lot about the attacker. This is
how the system can backtrack an attacker.

In the second module, a graphical user interface (GUI) is
rendered. This is done for appending a new RegEx in a
particular file which is not included before. This module is
administrator triggered. If an attack is done using a different
approach for which the RegEx is not present in the existing
files, then the administrator can add a new RegEx for that
particular attack in a particular file mentioned by the
administrator. These RegEx files are simultaneously accessed
by both modules. Hence, there is a possibility of deadlock in
the operating system. This problem is solved by creating a
temporary file for appending RegEx entered by the
administrator and then adding that RegEx to the main file
when module one execution is completed the next first time
in a cycle. Thus, there is no need to halt the detection engine
for alert generation. This makes the system real-time.

Fig 3.1: Block diagram of NetReconner

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 150

Flow chart for NetReconner system is shown below:

As shown in Fig 4.1, NetReconner comprises of two modules.
Each module acts independent of each other without being
interrupted by another one.

4.2 Results

Tests were conducted to check the performance of
NetReconner’s Detection Engine. During the test, the
Detection Engine was deployed on an Ubuntu machine
equipped with Intel Core i3 CPU, 64-bit OS and 8 GB RAM. To
launch the attacks, Kali Linux was used with inbuilt tools like
Nmap, Xerxes and Hping3. Following are some of the
snapshots taken while recording the results.

Fig 4.2.1 shows that the packets are captured using
tcpdump command and detection engine starts parsing
through all the captured packets. The “end_of_execution”
shows that the detection engine has parsed all packets. Till
this instant no attack has been detected and the execution
time remains almost constant as a result of the same.

Fig 4.2.2 shows that Cross-site scripting attack is detected

and the entire packet is captured and stored in a flat file. The
captured packet has many attributes, such as Source IP
address, Destination IP address, Host (the site on which the
attack has been performed), User-agent (Browser used for
performing the activity), Content (the content that the
attacker had put in the input field of the web page).

Fig 4.1: Flowchart for working of NetReconner

Fig 4.2.1: System before attack detection

Fig 4.2.2: System after attack detection

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 151

Fig 4.2.3 shows a graph of system timeline versus
execution time. The blue line represents the performance of
detection engine before attack, while the orange line
represents performance during attack. From the time the
detection engine starts till the time an attack is detected, the
execution time remains almost constant. When an attack is
detected, the magnitude of increase in execution time
depends upon the type of the attack.

5. CONCLUSIONS

This paper focused on the proposed signature-based IDS,
NetReconner, and elaborately explains the implementation of
the Intrusion Detection System. There are quite a number of
IDSs available in the market that require to be configured on
the system to be deployed on. NetReconner, on the other
hand, does not need to be configured. It only requires
installation of a few files and the IDS is good to go. The
detection engine is lightweight and uses simple flat files for
storing the set of regular expressions. No relational database
is used in the NetReconner which makes operations of the
detection engine easier. Another factor which makes
NetReconner advantageous is that the detection engine
works on string operations making it less cumbersome for
comparisons. Despite these advantages, problems still exist in
today’s Intrusion Detection Systems. RegEx generation is still
a challenge being a manual process. Furthermore, processing
of the packets depends on the system hardware. The existing
IDS can be added with more features such as behavioral
security and conversion to Intrusion Prevention System (IPS).

REFERENCES

[1] Kaspersky Security Bulletin OVERALL STATISTICS FOR

2016 Maria Garnaeva, Fedor Sinitsyn, Yury
Namestnikov, Denis Makrushin, Alexander Liskin.

[2] Karen Scarfone1, Peter Mell2, Guide to Intrusion
Detection and Prevention Systems (IDPS), Computer
Security Division Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930.

[3] Akash Garg1, Prachi Maheshwari2, ‘Performance
Analysis of Snort-based Intrusion Detection System “3rd
International Conference on Advanced Computing and
Communication System”, January 2016.

[4] Abdullah H Almutairi1, Dr. Nabih T Abdelmajeed2,
“Innovative Signature Based Intrusion Detection System
using Parallel Processing and Minimized Database’
Institute of Electrical and Electronics Engineers”, May
2017.

[5] Prof. D. P. Gaikwad1, Pooja Polshettiwar2, Priyanka
Musale3, Pooja Paranjape4, Ashwini S. Pawar5 “A
Proposal for Implementation of Signature Based
Intrusion Detection System Using Multithreading
Technique” International Journal of Computational
Engineering Research, November 2012.

[6] Osaghae EO1. Improved signature-based antivirus
system. International Journal of Computer Science and
Information Technology Research. 2015;3(4):250-254.

Fig 4.2.3: System performance

