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Abstract - Face recognition is being increasing used on 
smartphones for user authentication, with more recent 
technologies (such as Apple's TrueDepth camera system) 
giving better results than even fingerprint authentication. 
Traditional methods based on hand engineered features (such 
as edges and texture descriptors), combined with machine 
learning techniques have been replaced by deep learning 
methods based on CNN due to significant accuracy 
improvement. In this paper, we examine the factors affecting 
the deployment of deep learning models for face recognition 
on smartphones. 
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1.INTRODUCTION 
 
According to a 2018 survey by gsmarena [1], on average, 
new smartphones on the market have 14.5MP cameras, 
4.3GB RAM and score 2379 on the Basemark OS II 
benchmark. 
 
A typical smartphone camera uses a 4:3 aspect ratio and has 
a horizontal FOV between 60° and 80°. The average width of 
a human face is 16cm and 100x100 pixel faces are typically 
used for face recognition. Under these conditions, the 
maximum distance a smartphone can be used for face 
recognition would be 7.89m. By working with lower 
resolution images (up to 32x32 pixels), we can increase the 
distance further (up to 24.67m). Readers are referred to Pei 
et al. [2] for a comprehensive review on approaches to Low 
Quality Face Recognition (LQFR). 
 
 A typical face recognition system has the following stages:  
• Face Detection is used to detect faces in the images. With 
the rise in GPU availability and better training sets, deep 
convoluted neural networks (DCNN) are been increasingly 
used for this task. The speed of face detectors is still a crucial 
bottleneck in the face recognition pipeline. SSD and YOLO 
provide a fast solution for face detection. DPSS is a multi-
scale face detector that can produce reliable and accurate 
face detections at different scales, thus making it capable of 
detecting tiny and blurred faces. 
 
• Face normalization provides an effective and cheap way to 
distill face identity and dispel face variances, making face 
recognition easier. This includes steps such as changing 

orientation, lighting normalization, etc. Zheng et al. [6] 
examines traditional approaches for face normalization. A 
newer approach using a Generative Adversarial Network 
(GAN) is presented by Qian et al. [7]. 
 
• At the Feature Extraction stage, the pixel values of a face 
image are transformed into a compact and discriminative 
feature vector, also known as a template. Ideally, all faces of 
the same subject should map to similar feature vectors. 
 
• In the Feature Matching building block, two templates are 
compared to produce a similarity score that indicates the 
likelihood that they belong to the same subject. 
 
The last two stages are collectively called Face Recognition. 
Traditional methods based on hand engineered features 
(such as edges and texture descriptors), combined with 
machine learning techniques (such as Principal Component 
Analysis (PCA), Linear Discriminant Analysis (LDA) or 
Support Vector Machines (SVM)) have been replaced by 
deep learning methods based on CNN (automatically 
determines the best features to represent a face) due to 
significant accuracy improvement.  
 
The factors to consider while training a CNN are datasets, 
architecture and loss function. While deploying to mobile 
devices, we need to be mindful about resource constraints. 
This can be achieved by using model compression 
techniques. In the next section, we explore these factors and 
techniques. 
 

2. Literature Review 
 
2.1 Training Data 
 
In general, CNNs trained for classification become more 
accurate as the number of samples per class increases. This is 
because the CNN model can learn more robust features when 
is exposed to more intra-class variations. However, in face 
recognition we are interested in extracting features that 
generalize to subjects not present in the training set. Hence, 
the datasets used for face recognition must also contain many 
subjects so that the model is exposed to more inter-class 
variations. 
 
The effect that the number of subjects in a dataset was 
studied in [11]. In this work, a large dataset was first sorted 
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by the number of images per subject in decreasing order. 
Then, a CNN was trained with different subsets of training 
data by gradually increasing the number of subjects. The best 
accuracy was obtained when the first 10,000 subjects with 
the most images were used for training. Adding more 
subjects decreased the accuracy since too few images were 
available for each extra subject.  
 
Another study [12] investigated whether wider datasets are 
better than deeper datasets or vice versa (a dataset is 
considered deeper than another if it contains more images 
per subject and is considered wider than another if it 
contains more subjects). From this study, it was concluded 
that given the same number of images, wider datasets 
provide better accuracy. The authors reason that this is 
because wider datasets contain more inter-class variations 
and, therefore, generalize better to unseen subjects. 
 
Some common public datasets used for face recognition are: 
 

Table -1: Comparison of Datasets 
 

Comparison of Datasets 

Dataset Images Subject Images per Subject 

CelebA [13] 202,599 10,177 19.9 

VGGFace [15] 2.6M 2,622 1,000 

VGGFace2 [16] 3.31M 9,131 362.6 

 

2.2 Architecture 
 
The Facebook’s DeepFace, one of the first CNN-based 
approaches for face recognition that used a high capacity 
model, achieved an accuracy of 97.35% on the LFW 
benchmark, reducing the error of the previous state-of-the-
art by 27%. The authors trained the CNN with softmax loss 
using a dataset containing 4.4 million faces from 4,030 
subjects. 

Two novel contributions were made in this work: 

• An effective facial alignment system based upon explicit 3D 
modelling of faces 

• A CNN architecture containing locally connected layers that 
(unlike regular convolutional layers) can learn different 
features from each region in an image. 

Recent work shows that CNNs can be substantially deeper, 
more efficient and accurate to train if they contain shorter 
connections between layers close to the input and those close 
to the output. 

ResNets [21] have become the preferred choice for many 
object recognition tasks, including face recognition. The main 
novelty of ResNets is the introduction of a building block that 
uses a shortcut connection to learn a residual mapping. The 
use of shortcut connections allows training of much deeper 

architectures as they facilitate the flow of information across 
layers. A study of different CNN architectures was carried out 
in [17]. The best trade-off between accuracy, speed and 
model size was obtained with a 100-layer ResNet with a 
residual block like the one proposed in [18]. 

DenseNet [23] follows a principle similar to ResNet, except 
that it connects all previous layers (in a dense block) and not 
just the previous two/three layers. 

MobileNets [22] are being developed and used for real-time 
face recognition on devices with limited computational 
resources. 

2.3 Loss Function 

The choice of loss function for training CNN-based methods 
has been the most recent active area of research in face 
recognition. Even though CNNs trained with softmax loss 
have been very successful, it has been argued that the use of 
this loss function does not generalize well to subjects not 
present in the training set. This is because the softmax loss is 
encouraged to learn features that increase inter-class 
differences (to be able to separate the classes in the training 
set) but does not necessarily reduce intra-class variations. 
Several methods have been proposed to mitigate this issue. A 
simple approach is to optimize the bottleneck features using 
a discriminative subspace method such as joint Bayesian.  
Another approach is to use metric learning. Triplet loss 
function [14] is one of the most popular metric learning 
approaches for face recognition. The aim of the triplet loss is 
to separate the distance between positive pairs from the 
distance between negative pairs by a margin. In practice, 
CNNs trained with triplet loss converge slower than with 
softmax loss due to the large number of triplets (or pairs in 
the case of contrastive loss) needed to cover the entire 
training set. This problem can be mitigated by selecting hard 
triplets (i.e. triplets that violate the margin condition) during 
training.  
 
An alternative loss function used to learn discriminative 
features is the center loss proposed in [19]. The goal of the 
center loss is to minimize the distances between bottleneck 
features and their corresponding class centers. By jointly 
training with softmax and center loss, it was shown that the 
features learnt by a CNN could effectively increase inter-
personal variations (softmax loss) and reduce intra-personal 
variations (center loss). The center loss has the advantage of 
being more efficient and easier to implement than the 
contrastive and triplet losses since it does not require 
forming pairs or triplets during training.  
 
Another related metric learning method is the range loss 
proposed in [20] for improving training with unbalanced 
datasets. The range loss has two components. The intra-class 
component of the loss minimizes the k-largest distances 
between samples of the same class, and the inter-class 
component of the loss maximizes the distance between the 
closest two class centers in each training batch. By using 
these extreme cases, the same information from each class is 
used, regardless of how many samples per class are available. 
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Range loss needs to be combined with softmax loss to avoid 
the loss being degraded to zeros [19]. 
 
Rajan et al. [4] recently introduced crystal loss which 
functions by constraining the deep features to lie on a 
hypersphere and achieves impressive results on the IARPA 
Janus Benchmark C (IJB-C) dataset. 
 
2.4 Model Compression 

Training must extract structure from highly redundant, very 
large datasets but it does not need to operate in real time, and 
it can use a huge amount of computation. Deployment to 
users, however, has much more stringent requirements on 
latency and computational resources. Hence, we need to 
make use of model compression techniques such as pruning 
and factorization. 

In [5], Hilton et al. suggest that a smaller model can be trained 
by using the results from the original model as targets and 
called this process “distillation”. A distilled network was 
shown to have comparable accuracy to the original in [8]. 

2.5 Generative Adversarial Network (GAN) 

In a GAN [10], two neural networks (generator and 
discriminator) are pitted against each other. In the case of 
identifying real faces, the generators goal is to take random 
values and create fake faces that the discriminator thinks are 
real, while the discriminators goal is to successfully identify 
real and fake faces. 

Advances in GAN allows us to generate additional training 
images without requiring millions of face images to be 
labelled. Recent works [9] allow facial attribute manipulation, 
facial expression editing, face frontalisation and face ageing. 
We can also generate novel identities using GANs [3]. 

3. CONCLUSIONS 

By using CNN for face recognition, we get the following: 
 
Advantages: 
• Significant accuracy improvement in comparison to 
traditional methods based on hand-crafted features. 
• Straightforward system scaling to achieve even higher 
accuracy by increasing the size of the training sets and/or the 
capacity of the networks. 
 
Disadvantages: 
• Needs to be trained with very large datasets of labelled face 
images that contain enough variations to generalize unseen 
samples. Collecting such datasets is expensive. 
• Very deep CNN architectures are slow to train. 
• Very deep CNN architectures are hard to deploy. 
 
Proposed Solutions: 
• GANs are a promising solution to the first issue of data 
collection. They can be used to generate additional training 
images without requiring millions of face images to be 
labelled. 
• To address the second issue of training time, more efficient 
architectures such as MobileNets can be used 
 

• The deployment issue can be dealt with by using model 
compression techniques. 
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