
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6486

Study of Algorithms for Mining High Utility Itemsets

Radhika Chandwadkar1, Manisha Thombare2

1Asst. Professor, Dept of Computer Engineering, MVPS KBTCOE, Nashik, Maharashtra, India
2Asst. Professor, Dept. of Computer Engineering, MVPS KBTCOE, Nashik, Maharashtra, India

---***--

Abstract – Data mining techniques are applied for
finding meaningful information and patterns from the large
database. The traditional frequent itemset mining (FIM)
algorithm generate large number of frequent itemset
considering only the occurrence aspect of itemset It does not
take into consideration the utility aspect of quantity and
profit of item purchased. Hence an extension to FIM, High
utility itemsets (HUIs) mining is emerging in information
mining, which considers finding all itemsets having a utility
meeting a user-specified minimum utility threshold. High-
utility itemset mining (HUIM), aims to find a complete set of
itemsets having high utilities in a given dataset. High
average-utility itemset mining (HAUIM) is a variation of
HUIM. HAUIM provides an alternative measurement named
the average-utility to discover the itemsets by taking into
consideration both of the utility values and lengths of
itemsets. Efficient algorithms named TKU (mining Top-K
Utility itemset) and TKO (mining Top-K utility itemset in
One phase) are used in HUIM. A pattern growth approach is
specified for efficiently mining of HAUIs. This paper studies
the different algorithms for mining of high utility itemset.

Key Words: Data mining ,Frequent Itemset mining, High
Utility Itemsets, UP Tree, High average utility itemset
mining.

1. INTRODUCTION

Frequent itemset mining is one of the major area in data
mining. It is used to discover the frequently occurring
itemset from the database that is above a user defined
frequency threshold.[1] In Frequent itemset mining it is
very difficult for user to find proper threshold value. In
today’s life users are interested to sell the itemset which
gives more profit. Frequent itemset mining only finds the
frequently occurring itemsets but it does not consider the
quantity and number of item purchased. It also loses the
useful information of profit gaining itemset having less
selling frequency. Hence, frequent itemset mining cannot
satisfy the demand of user who wants to search the profit
gaining itemset.

To overcome these limitations high utility itemset mining
has been proposed.[1] It considers both the profit and
number of items purchased and help to improve the
business strategy. In utility mining, each item is associated
with a utility (e.g. unit profit) and an occurrence count in
each transaction (e.g. quantity). The utility of an itemset
represents its importance, which can be measured in
terms of weight, value, quantity or other information

depending on the user specification. An itemset is called
high utility itemset (HUI) if its utility is not less than a
user-specified minimum utility threshold.HUI mining is
essential in many applications such as streaming analysis,
market analysis, mobile computing and biomedicine [4].
But efficient mining of HUIs from databases is not an easy
task because the downward closure property used in FIM
does not hold for the utility of itemsets. In other words,
pruning search space for HUI mining is difficult because a
superset of a low utility itemset can be high utility itemset.

However it is difficult for users to choose an appropriate
minimum utility threshold in practice. Depending on the
threshold, the output size can be very small or very large.
Besides, the choice of the threshold greatly influences the
performance of the algorithms. If threshold value is set
large then there are chances that no high utility itemset
are found and if threshold value is set too small, too many
high utility itemset are generated and hence it is very
difficult to understand the result.

For such limitations of HUIM, the concept of high average-
utility mining (HAUIM) was introduced [11]. The average-
utility of an itemset is derived by dividing its utility to the
number of its items. An itemset is considered as a high
average-utility itemset (HAUI) if its average-utility value is
no less than a given minimum utility threshold (minUtil).
HAUIM is important for several application domains, such
as, business applications, medical data analysis, streaming
data analysis etc.

2. RELATED WORK

 Although many studies have taken the task of HUI mining,
it is difficult for users to choose an appropriate minimum
utility threshold in practice. To set the proper value of
threshold, user need to try various values of threshold by
guessing and re-executing the algorithm repeatedly till it
generate proper threshold value. This is a very tedious and
time consuming process. Hence to precisely control the
output size and discover the itemsets with the highest
utilities without setting the thresholds, a promising
solution is to redefine the task of mining HUIs as mining
top-k high utility itemsets (top-k HUIs). Vincent S. Tseng,
Cheng-wei Wu, Philippe Fournier-Viger and Philip S. Yu[4]
proposed a novel framework for discovering top-k high
utility itemsets mining, where k value indicates desired
number of HUIs to be mined. Two types of efficient
algorithms named TKU (mining Top-K Utility itemsets)
and TKO (mining Top-K utility itemsets in one phase) are
proposed for mining the itemsets in which there is no

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6487

need to specify threshold value. TKU algorithm is used for
mining potential Top-k high utility itemsets. TKO is one
phase algorithm; it uses list based structure named utility-
list to maintain the information of Top-k high utility
itemset.

Another strategy using the concept of transaction-
weighted utilization (TWU) model [5] was introduced to
facilitate the performance of the mining task. In this
model, an itemset is called high transaction-weighted
utilization itemset (HTWUI) if its TWU is no less than
min_util, where the TWU of an itemset represents an
upper bound on its utility. Therefore, a HUI must be a
HTWUI and all the HUIs must be included in the complete
set of HTWUIs. A classical TWU model-based algorithm
consists of two phases. In the first phase, called phase I,
the complete set of HTWUIs are found. In the second
phase, called phase II, all HUIs are obtained by calculating
the exact utilities of HTWUIs with one database scan.

Later the focus on enhancing the HUIM was on the use of
data structures used in the process. Shuning Xing, Fangai
Liu, Jiwei Wang, Lin Pang and Zhenguo Xu by introducing a
Fast Utility Tree [6] (FU-Tree) proposed an UP-Tree
process that gives better scalability for mining high utility
itemsets.

The research further focused on improving the efficiency
of the algorithm for mining the high utility itemsets. Serin
Lee, Jong Soo Park suggested a new algorithm, TKUL-
Miner [7], to mine top-k high utility itemsets efficiently. It
uses new utility-list structure for maintaining necessary
information at each and every node on the search tree for
mining the itemsets. Authors proposed efficient algorithm
to raise the border minimum utility threshold rapidly.
Also, for calculating smaller overestimated utilities, two
additional strategies are suggested to prune unpromising
itemsets effectively.

Y. Liu, W. Liao, and A. Choudhary proposed two phase
algorithm [8] to overcome the limitation of utility mining
and mine high utility itemsets from the database. In first
phase algorithm defines transaction weighted utilization,
and discover the transaction weighted utilization model
and this model support transaction-weighted downward
closure property. In the last phase one additional database
scan is carried out to filter out the overestimated itemsets.
Another fast high utility itemset mining algorithm was
suggested by Ameena Aiman, Raafiya Gulmeher[3].They
proposed the FHM algorithm that had a novel pruning
procedure named EUCP (Estimated Utility Co-occurrence
Pruning) that can prune itemsets without performing joins

3. HIGH UTILITY ITEMSET MINING (HUIM)

One of the concept of high utility itemset mining, is to let
the users specify k, i.e., the number of desired itemsets,
instead of specifying the minimum utility threshold.
Setting k is more intuitive than setting the threshold

because k represents the number of itemsets that the
users want to find whereas choosing the threshold
depends primarily on database characteristics, which are
often unknown to users. Top-k high utility itemset mining
finds out desired number of k high utility itemset, where k
value is taken from user.

Two efficient algorithms named TKU (mining TopK Utility
itemsets) and TKO (mining Top-K utility itemsets in One
phase) are proposed for mining the complete set of top-k
HUIs in databases without the need to specify the min_util
threshold. The TKU algorithm adopts a compact tree-
based structure named UP-Tree [10] to maintain the
information of transactions and utilities of itemsets. TKU
inherits useful properties from the TWU model and
consists of two phases. In phase I, potential top-k high
utility itemsets (PKHUIs) are generated. In phase II, top-k
HUIs are identified from the set of PKHUIs discovered in
phase I. On the other hand, the TKO algorithm uses a list-
based structure named utility-list [9] to store the utility
information of itemsets in the database. It uses vertical
data representation techniques to discover top-k HUIs in
only one phase.

3.1 TKU Algorithm

TKU (mining Top-k Utility itemsets) for discovering top-k
HUIs without specifying min_util.TKU is an extension of
UPGrowth [10], a tree-based algorithm for mining HUIs.
TKU adopts the UP-Tree structure of UP-Growth to
maintain the information of transactions and top-k HUIs.
TKU is executed in three steps:

(1) Construction of UP Tree.
A UP-Tree can be constructed by scanning the
original database twice. In the first scan, the
transaction utility of each transaction and TWU of
each item are computed. During the second database
scan, transactions are reorganized and then inserted
into the UP-Tree.

 (2) Generation of potential top-k high utility itemsets
(PKHUIs) from the UP-Tree.

The TKU algorithm uses an internal variable named
border minimum utility threshold (denoted as
min_utilBorder) which is initially set to 0 and raised
dynamically after a sufficient number of itemsets with
higher utilities has been captured during the generation of
PKHUIs.

 (3) Identification of top-k HUIs from the set of PKHUIs.

After identifying PKHUIs, TKU calculates the utility of
PKHUIs by scanning the original database once, to identify
the top-k HUIs. At this stage only the candidate itemset X is
considered, if its estimated utility value reached after
phase I is not less than min_utilBorder. Thus the top K high
utility itemsets are identified.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6488

3.2 TKO Algorithm

The second algorithm that is under discussion is TKO
(mining Top-k utility itemsets in One phase). It can
discover top-kHUIs in only one phase. It utilizes the basic
search procedure of HUI-Miner and its utility-list structure
[9]. Whenever an itemset is generated by TKO, its utility is
calculated by its utility-list without scanning the original
database.. The utility-lists of items are called initial utility-
lists, which can be constructed by scanning the database
twice In the first database scan, the TWU and utility values
of items are calculated. During the second database scan,
items in each transaction are sorted in order of TWU
values and the utility-list of each item is constructed. TKO
initially sets the min_utilBorder threshold to 0 and
initializes a min-heap structure TopK-CI-List for
maintaining the current top-k HUIs during the search. The
algorithm then scans database twice to build the initial
utility-lists. Then, TKO explores the search space of top-k
HUI using a procedure named Top K-HUI-Search. It is the
combination of a novel strategy named RUC (Raising
threshold by Utility of Candidates) with the HUI-Miner
search procedure [10]. During the search, TKO updates the
list of current top-k HUIs in TopK-CI-List and gradually
raises the min_utilBorder threshold by the information of
TopK-CI-List. When the algorithm terminates, the TopKCI-
List captures the complete set of top-k HUIs in the
database.

4. PROBLEM DEFINITION

Let I = {I1, I2, I3…….Ip} be the set of items used in database
and D = {T1, T2, T3……Tm} is a set of transaction used in
transaction database. Where each transaction Td in
transaction database have a unique identifier d, called Tid.
The quantity and profit of item Ik(1 <=k ”<= p) is denoted
by q(Ik) and p(Ik) respectively. An itemset Y is a set of all
distinct items which is a subset of I. Table 1 shows
example of transaction database and the unit profit of item
in transaction

Table -1. An Example of Transaction Database

TID Transaction
T1 (A,1) (B,1) (C,4) (D,1)
T2 (B,1) (D,3)
T3 (A,2) (D,1)
T4 (C,1)
T5 (A,1) (B,2) (D,1) (E,3)
T6 (A,1) (B,1) (C,1) (D,1) (E,1)
T7 (B,2) (C,3) (E,1)
T8 (D,1) (E,2)
T9 (A,7) (C,1) (D,1)
T10 (B,1) (C,1) (D,1) (E,1)

Table -2.Unit profit Item

A B C D E
3 10 1 6 5

The utility of item Ik in transaction Td is denoted as u(Ik,
Td) and defined as:

u(Ik, Td) = q(Ik, Td) ×p(Ik)

The utility of itemset in a transaction Td is denoted as u(Y,
Td) and defined as the summation of utility of all the
items present in the transaction.
The utility of an itemset Y in a database D is denoted as
u(Y) and defined as the summation of utility of the
itemset in all the transactions.
The transaction utility of a transaction Td is denoted as
TU (Td) and defined as the summation of utility of all
items present in the transaction. Transaction utility of
above transactions is shown in Table 3.

Table -3.Transaction utility of transaction

TID Transaction TU
T1 (A,1) (B,1) (C,4) (D,1) 23
T2 (B,1) (D,3) 28
T3 (A,2) (D,1) 12
T4 (C,1) 1
T5 (A,1) (B,2) (D,1) (E,3) 44
T6 (A,1) (B,1) (C,1) (D,1) (E,1) 25
T7 (B,2) (C,3) (E,1) 28
T8 (D,1) (E,2) 16
T9 (A,7) (C,1) (D,1) 28

T10 (B,1) (C,1) (D,1) (E,1) 22

The Transaction weighted utility (TWU) of an itemset Y is
denoted as TWU(Y) and is defined as the summation of TU
of the transactions in which the itemset is present.

Table -4.Transaction weighted utility of items

Item A B C D E
TWU 132 170 127 208 135

Transaction-weighted utility of itemset supports
antimonotone property. Transaction-weighted utility is
calculated in Table 4. The Transaction-weighted utility
are then arrange in descending order according to their
transaction utility as shown in Table 5. It indicates that
TWU of any superset of Y cannot be greater than Y and
this property is called Transaction- weighted Downward
Closure property.

Table 5. Rearranging the item with respect to TWU

Item TWU
D 208
B 170
E 135
A 132
C 127

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6489

The Minimum utility of an item in transaction Td is
defined as the occurrence of the minimum utility value of
the item in the database.

Table 6. Items and MIUs

Item A B C D E
MIU 3 10 1 6 5

The Maximum utility of an item in transaction Td is
defined as the occurrence of the maximum utility value of
the item in the database.

Table 7. Items and MAUs

Item A B C D E
MAU 21 20 4 18 15

In first scans, it finds out transaction utility of transaction
and it also computes TWU of each and every item and in
second scan it reorganizes the transaction and constructs
the Up Tree. The rearrangement of item is done according
to their TWU as shown in the above Table 5.

Next step is performed in three steps, in the very first
step calculate MIU item. The MIU item is calculated in
Table 6.In the second step calculate MAU of item. The
MAU item is calculated in Table 7 .After that Pre-
Evaluation Matrix (PEM) is generated. If the k th value in
pre evaluation matrix is higher than calculated the
minimum utility border value then minimum utility
border is set to kth highest value of pre evaluation matrix.
The pre-evaluation matrix is shown in Table 8

Table -8.Pre EvaluationMatrix

Item B C D E
A 49 33 66 26
B 59 102 90
C 31 20
D 59
E

In the final step, it generates top-k high utility itemsets.
TKU uses UP Tree where as TKO uses utility list and
generate the top- k HUIs in one step

5. HIGH AVERAGE UTILITY ITEMSET MINING
(HAUIM)

The result of HUIM has itemsets generated with a long
length. However, as the length of the itemset increases, its
utility tends to be larger since the utility of an itemset is
the sum of the utility of each item that it contains.
Therefore, HUIM mainly suffers from generating a large
number of itemsets with long lengths. In addition,
because of the nature of the utility measurement in HUIM,
most of the discovered HUIs may contain items with low
utilities. To address these limitations, the concept of high

average-utility mining (HAUIM) was introduced with a
more fair measurement named average-utility [11]. The
average-utility of an itemset is derived by dividing its
utility to the number of its items. An itemset is considered
as a high average-utility itemset (HAUI) if its average-
utility value is no less than a given minimum utility
threshold (minUtil).

A typical HAUIM approach aims to find a complete set of
HAUIs based on a given minUtil threshold. This process is
computationally complex due to anti-monotonic
characteristic of average-utilities of itemsets. The first
proposed algorithm to mine HAUIs is the Two-phase high
average-utility pattern mining (TPAU) algorithm [11]. But
the HAUIM algorithms need long execution times and
large amounts of memory to perform their mining tasks,
especially when the database size is large or the minimum
utility threshold is low. Hence to enhance the efficiency of
solving the problem of mining HAUIs, efficient strategies
have been developed, [3]such as :

(1) Introducing more effective upper-bounds and pruning
strategies for early pruning unpromising itemsets from
the search space

(2) Proposing efficient data structures for reducing the
memory consumption and the cost of database scans in
addition to avoid the costly join operations

(3) Developing an effective mining method to discover the
complete and correct set of HAUIs by utilizing all the
strategies mentioned above together

In the algorithm, the anti-monotone property is used to
decrease the number of itemsets to be scanned level by
level. There are two phases in the algorithm. In phase 1,
the average-utility upper bound is used to overestimate
the itemsets. The average-utility upper bound is an
overestimated utility value instead of actual utility value.
The average-utility upper bound can ensure the anti-
monotone property. Thus, each subset of an itemset with
high average-utility upper bound must be high; each
superset of an itemset with low average-utility upper
bound must be low. It can thus prune many low average-
utility upper bound itemsets level by level and decrease
the time to scan a database.

In phase 2, we need to scan the database once to check the
result of phase 1 is actually high or not. The algorithm first
finds all the candidate average utility 1-itemsets C1. The 1-
itemsets whose average-utility upper bound is larger than
or equal to minimum average-utility threshold are put in
the set of candidate average-utility 1-itemset C1.
Candidate average-utility 2-itemsetsC2 are formed
fromC1. The algorithm then checks all the candidate
average-utility 2-itemsetsC2 by comparing the average-
utility upper bound with the minimum average-utility
threshold. The itemsets which do not exceed the minimum
average-utility threshold are removed from the candidate

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6490

2-itemsets. The same procedure is repeated until all the
itemsets have been found. Then we calculate the actual
average-utility value of each candidate average-utility
itemset. If the itemset is larger than or equal to the
minimum average utility threshold, put it in the set of high
average-utility itemsets.

Consider the above example with alternate representation
of the Database as shown in Table 9.

Table 9: Alternate representation of Database

TID A B C D E
T1 1 1 4 1 0
T2 0 1 0 3 0
T3 2 0 0 1 0
T4 0 0 1 0 0
T5 1 2 0 1 3
T6 1 1 1 1 1
T7 0 2 3 0 1
T8 0 0 0 1 2
T9 7 0 1 1 0
T10 0 1 1 1 1

The utility value of each item occurring in each transaction
in Table 9 is calculated. Take item B in transaction 7 as an
example. The quantity of item B in transaction 7 is 2, and
its profit is 10. The utility value of B is thus calculated as
2*10 which is 20. The utility values of all the items in each
transaction are shown in Table 10.

The utility values of the items in each transaction are
compared and the maximal utility value in the transaction
is found. The maximal utility value in each transaction is
shown in Table 10

Table 10: Utility values and Maximal utility

TID A B C D E Maximal
Utility

T1 3 10 4 6 0 10
T2 0 10 0 18 0 18
T3 6 0 0 6 0 6
T4 0 0 1 0 0 1
T5 3 20 0 6 15 20
T6 3 10 1 6 5 10
T7 0 20 3 0 5 20
T8 0 0 0 6 10 10
T9 21 0 1 6 0 21

T10 0 10 1 6 5 10

The average-utility upper bound of 1-itemsets is
calculated. Take item A as an example. It appears in
transactions 1, 3, 5, 6 and 9. The average-utility upper
bound of A is thus the total amount of the maximal utility
values of these transactions. It is calculated as 10 + 6 + 20
+ 10 + 21, which is 67. The upper bound values of all the

items are shown in Table 11.

Table 11:The candidate average-utility 1-itemsets,C1

Candidate 1-Itemset Avg. utility upper bound
A 67
B 88
C 72
D 105
E 70

Check whether the average-utility upper bound of
1-itemsets is larger than or equal to user-defined
minimum average-utility threshold k, which is 45.4. In
this example, the average-utility upper bound of 1-
itemsets exceeds the minimum average-utility threshold
k. All the items are recorded as candidate average-utility
1-itemsets,C1.

The candidate average-utility 2-itemsets (C2) are then
generated from C1. They are {AB}, {AC}, {AD}, {AE}, {BC},
{BD}, {BE}, {CD}, {CE}, {DE}. The average-utility upper
bound of each 2-itemset is calculated. Take the itemset
{AB} as an example. It appears in transactions 1, 5 and 6.
The average-utility upper bound of {AB} is thus the total
amount of the maximal utility values of these
transactions as 10 + 20 + 10, which is 40. The average-
utility upper bound of each 2-itemset is thus checked
against the user-defined minimum average-utility
threshold k. In this example, the itemsets {AB}, {AC},
{AE} and {CE} do not exceed k. These itemsets are thus
removed from C2. The remaining candidate average-
utility 2-itemsets are shown in Table 12.

Table 12:The candidate average-utility 2-itemsets,C2

Candidate 2-Itemset Avg. utility upper bound
AD 67
BC 50
BD 68
BE 60
CD 51
DE 50

C3 is then generated from C2 Since the average-utility
upper bounds of both the two candidate 3-itemsets are
less than k, they are removed from C3 and C3 becomes
null.

The actual average-utility value au’s of each candidate
average-utility itemset is calculated. Take the itemset
{AD}as an example. The actual utility values of items A
and D in transaction 1 are 3 and 6, respectively. Since the
itemset {AD} contains 2 items, its actual average-utility
value in transaction 1 is calculated as (3 + 6)/2, which is
4.5. The itemset {AD} appears in transactions 1, 3, 5, 6
and 9. The actual average-utility value of {AD} is thus the
total amount of actual average-utility values of these
transactions. The value is calculated as (9 + 12 + 9 + 9 +
27)/2, which is 33. The actual average-utility value of
each candidate average-utility itemset is shown in Table

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 6491

13.

Table 13: Actual Average utility values of average
candidate itemset.

Candidate itemset Actual average utility

A 36
B 80
C 11
D 60
E 40

AD 33
BC 29.5
BD 51
BE 45
CD 15.5
DE 29.5

The actual average utility value of each candidate average
utility itemset is then compared with the user defined
minimum average-utility threshold k. In this example the
actual average –utility values of itemsets {B}, {D} and
{BD} are larger than or equal to k. They are thus put into
the set of high average-utility itemsets, H, as shown in
Table 14.

Table 14: High average utility itemsets.

High Average Utility
Itemsets

Average utility

B 80
D 60

BD 51

Thus the high average utility itemsets can be mined from
the transactional database

6. CONCLUSION

High-utility itemset mining (HUIM), which is an extension
of well-known frequent itemset mining (FIM), takes into
account utilities (such as, unit quantities and unit profits)
of the itemsets. However HUIM leads to the generation of
huge number of itemsets with long lengths. To address
this problem and extract more meaningful results, the
concept of high average-utility itemset mining (HAUIM)
was introduced.It is observed that HAUIM gives better
results as compared to HUIM. The further work can be
directed to improve the efficiency of high average utility
mining algorithms.

REFERENCES

[1] Snehal D. Ambulkar , Dr. Prashant N. Chatur “Efficient
Algorithms for mining High Utility Itemset”, International
Conference on Recent Trends in Electrical, Electronics and
Computing Technologies,2017.

[2] Ameena Aiman, Raafiya Gulmeher,- “Efficient
Algorithms for Mining Top-K High Utility Itemsets”,
International Journal of Computer Sciences and
Engineering, Vol.-6, Issue-7, July 2018.

[3] Irfan Yildirim and Mete Celik, - “An Efficient Tree-
Based Algorithm for Mining High Average-Utility
Itemset”,IEEE Access,Volume 7, 2019

[4] Vincent S. Tseng, Cheng-wei Wu, Philippe Fournier-
Viger and Philip S. Yu, “Efficient Algorithms For Mining
Top-K High Utility Itemsets”, In IEEE Transactions on
Knowledge and Data Engineering, vol.28 no.1,2015

[5] Y. Liu, W. Liao, and A. Choudhary, ―A Fast High Utility
Itemsets Mining Alg orithm, ‖ in Proc. of the Utility-Based
Data Mining Workshop, pp. 90- 99, 2005

[6] Shuning Xing, Fangai Liu, Jiwei Wang, Lin Pang,
Zhenguo Xu, “Utility Pattern Mining Algorithm Bases On
Improved Utility Pattern Tree”, In 8th international
Symposium On Computational Intelligence and Design,
pp.258 – 261,2015

[7] Serin Lee, Jong Soo Park, “Top-K High Utility Itemset
Mining Based On Utility List Structures”, In Proceedings of
IEEE International Conference on Data Mining (ICDM),
Maebashi, pp. 101 - 108, 2016.

[8] Y. Liu, W. Liao, and A. Choudhary, “A two-phase
algorithm for fast discovery of high utility itemsets”, In
Proceedings of the 9th PacificAsia Conference on
Knowledge Discovery and Data Mining, Springer, Vol.
3518, pp. 689-695, 2005

[9] M. Liu and J. Qu, ―Mining High Utility Itemsets without
Candidate Gene ration,‖ in Proc. of ACM Int'l Conf. on
Information and Knowledge Management, pp. 55 - 64,
2012

[10] V. S. Tseng, C. Wu, B. Shie, and P. S. Yu, ―UP-Growth:
An Efficient Alg orithm for High Utility Itemset Mining , ‖
in Proc. of the ACM SIGKDD Int'l Conf. on Knowledge
Discovery and Data Mining, pp. 253–262, 2010

[11] T.-P. Hong, C. H. Lee, and S. L. Wang, ‘‘Effective utility
mining with the measure of average utility,’’ Expert Syst.
With Appl., vol. 38, no. 7,pp. 8259–8265, 2011.
doi:10.1016/j.eswa.2011.01.006

