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Abstract – Data mining techniques are applied for 
finding meaningful information and patterns from the large 
database. The traditional frequent itemset mining (FIM) 
algorithm generate large number of frequent itemset 
considering only the occurrence aspect of itemset It does not 
take into consideration the utility aspect of quantity and 
profit of item purchased. Hence an extension to FIM, High 
utility itemsets (HUIs) mining is emerging in information 
mining, which considers finding all itemsets having a utility 
meeting a user-specified minimum utility threshold. High-
utility itemset mining (HUIM), aims to find a complete set of 
itemsets having high utilities in a given dataset. High 
average-utility itemset mining (HAUIM) is a variation of 
HUIM. HAUIM provides an alternative measurement named 
the average-utility to discover the itemsets by taking into 
consideration both of the utility values and lengths of 
itemsets. Efficient algorithms named TKU (mining Top-K 
Utility itemset) and TKO (mining Top-K utility itemset in 
One phase) are used in HUIM. A pattern growth approach is 
specified for efficiently mining of HAUIs. This paper studies 
the different algorithms for mining of high utility itemset.  

 
Key Words: Data mining ,Frequent Itemset mining, High 
Utility Itemsets, UP Tree, High average utility itemset 
mining. 
 

1. INTRODUCTION  
 
Frequent itemset mining is one of the major area in data 
mining. It is used to discover the frequently occurring 
itemset from the database that is above a user defined 
frequency threshold.[1] In Frequent itemset mining it is 
very difficult for user to find proper threshold value. In 
today’s life users are interested to sell the itemset which 
gives more profit. Frequent itemset mining only finds the 
frequently occurring itemsets but it does not consider the 
quantity and number of item purchased. It also loses the 
useful information of profit gaining itemset having less 
selling frequency. Hence, frequent itemset mining cannot 
satisfy the demand of user who wants to search the profit 
gaining itemset.  

To overcome these limitations high utility itemset mining 
has been proposed.[1] It considers both the profit and 
number of items purchased and help to improve the 
business strategy. In utility mining, each item is associated 
with a utility (e.g. unit profit) and an occurrence count in 
each transaction (e.g. quantity). The utility of an itemset 
represents its importance, which can be measured in 
terms of weight, value, quantity or other information 

depending on the user specification. An itemset is called 
high utility itemset (HUI) if its utility is not less than a 
user-specified minimum utility threshold.HUI mining is 
essential in many applications such as streaming analysis, 
market analysis, mobile computing and biomedicine [4]. 
But efficient mining of HUIs from databases is not an easy 
task because the downward closure property used in FIM 
does not hold for the utility of itemsets. In other words, 
pruning search space for HUI mining is difficult because a 
superset of a low utility itemset can be high utility itemset. 

However it is difficult for users to choose an appropriate 
minimum utility threshold in practice. Depending on the 
threshold, the output size can be very small or very large. 
Besides, the choice of the threshold greatly influences the 
performance of the algorithms. If threshold value is set 
large then there are chances that no high utility itemset 
are found and if threshold value is set too small, too many 
high utility itemset are generated and hence it is very 
difficult to understand the result.  

For such limitations of HUIM, the concept of high average-
utility mining (HAUIM) was introduced [11]. The average-
utility of an itemset is derived by dividing its utility to the 
number of its items. An itemset is considered as a high 
average-utility itemset (HAUI) if its average-utility value is 
no less than a given minimum utility threshold (minUtil). 
HAUIM is important for several application domains, such 
as, business applications, medical data analysis, streaming 
data analysis etc. 

2. RELATED WORK 

 Although many studies have taken the task of HUI mining, 
it is difficult for users to choose an appropriate minimum 
utility threshold in practice. To set the proper value of 
threshold, user need to try various values of threshold by 
guessing and re-executing the algorithm repeatedly till it 
generate proper threshold value. This is a very tedious and 
time consuming process. Hence to precisely control the 
output size and discover the itemsets with the highest 
utilities without setting the thresholds, a promising 
solution is to redefine the task of mining HUIs as mining 
top-k high utility itemsets (top-k HUIs). Vincent S. Tseng, 
Cheng-wei Wu, Philippe Fournier-Viger and Philip S. Yu[4] 
proposed a novel framework for discovering top-k high 
utility itemsets mining, where k value indicates desired 
number of HUIs to be mined. Two types of efficient 
algorithms named TKU (mining Top-K Utility itemsets) 
and TKO (mining Top-K utility itemsets in one phase) are 
proposed for mining the itemsets in which there is no 
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need to specify threshold value. TKU algorithm is used for 
mining potential Top-k high utility itemsets. TKO is one 
phase algorithm; it uses list based structure named utility-
list to maintain the information of Top-k high utility 
itemset. 

 
Another strategy using the concept of transaction-
weighted utilization (TWU) model [5] was introduced to 
facilitate the performance of the mining task. In this 
model, an itemset is called high transaction-weighted 
utilization itemset (HTWUI) if its TWU is no less than 
min_util, where the TWU of an itemset represents an 
upper bound on its utility. Therefore, a HUI must be a 
HTWUI and all the HUIs must be included in the complete 
set of HTWUIs. A classical TWU model-based algorithm 
consists of two phases. In the first phase, called phase I, 
the complete set of HTWUIs are found. In the second 
phase, called phase II, all HUIs are obtained by calculating 
the exact utilities of HTWUIs with one database scan. 

Later the focus on enhancing the HUIM was on the use of 
data structures used in the process. Shuning Xing, Fangai 
Liu, Jiwei Wang, Lin Pang and Zhenguo Xu by introducing a 
Fast Utility Tree [6] (FU-Tree) proposed an UP-Tree 
process that gives better scalability for mining high utility 
itemsets. 

The research further focused on improving the efficiency 
of the algorithm for mining the high utility itemsets. Serin 
Lee, Jong Soo Park suggested a new algorithm, TKUL-
Miner [7], to mine top-k high utility itemsets efficiently. It 
uses new utility-list structure for maintaining necessary 
information at each and every node on the search tree for 
mining the itemsets. Authors proposed efficient algorithm 
to raise the border minimum utility threshold rapidly. 
Also, for calculating smaller overestimated utilities, two 
additional strategies are suggested to prune unpromising 
itemsets effectively. 

Y. Liu, W. Liao, and A. Choudhary proposed two phase 
algorithm [8] to overcome the limitation of utility mining 
and mine high utility itemsets from the database. In first 
phase algorithm defines transaction weighted utilization, 
and discover the transaction weighted utilization model 
and this model support transaction-weighted downward 
closure property. In the last phase one additional database 
scan is carried out to filter out the overestimated itemsets. 
Another fast high utility itemset mining algorithm was 
suggested by Ameena Aiman, Raafiya Gulmeher[3].They 
proposed the FHM algorithm that had a novel pruning 
procedure named EUCP (Estimated Utility Co-occurrence 
Pruning) that can prune itemsets without performing joins  

3. HIGH UTILITY ITEMSET MINING (HUIM) 

One of the concept of high utility itemset mining, is to let 
the users specify k, i.e., the number of desired itemsets, 
instead of specifying the minimum utility threshold. 
Setting k is more intuitive than setting the threshold 

because k represents the number of itemsets that the 
users want to find whereas choosing the threshold 
depends primarily on database characteristics, which are 
often unknown to users. Top-k high utility itemset mining 
finds out desired number of k high utility itemset, where k 
value is taken from user.  

Two efficient algorithms named TKU (mining TopK Utility 
itemsets) and TKO (mining Top-K utility itemsets in One 
phase) are proposed for mining the complete set of top-k 
HUIs in databases without the need to specify the min_util 
threshold. The TKU algorithm adopts a compact tree-
based structure named UP-Tree [10] to maintain the 
information of transactions and utilities of itemsets. TKU 
inherits useful properties from the TWU model and 
consists of two phases. In phase I, potential top-k high 
utility itemsets (PKHUIs) are generated. In phase II, top-k 
HUIs are identified from the set of PKHUIs discovered in 
phase I. On the other hand, the TKO algorithm uses a list-
based structure named utility-list [9] to store the utility 
information of itemsets in the database. It uses vertical 
data representation techniques to discover top-k HUIs in 
only one phase.  

3.1 TKU Algorithm 

TKU (mining Top-k Utility itemsets) for discovering top-k 
HUIs without specifying min_util.TKU is an extension of 
UPGrowth [10], a tree-based algorithm for mining HUIs. 
TKU adopts the UP-Tree structure of UP-Growth to 
maintain the information of transactions and top-k HUIs. 
TKU is executed in three steps: 

(1) Construction of UP Tree. 
A UP-Tree can be constructed by scanning the 
original database twice. In the first scan, the 
transaction utility of each transaction and TWU of 
each item are computed. During the second database 
scan, transactions are reorganized and then inserted 
into the UP-Tree. 

 (2) Generation of potential top-k high utility itemsets 
(PKHUIs) from the UP-Tree.  

The TKU algorithm uses an internal variable named 
border minimum utility threshold (denoted as 
min_utilBorder) which is initially set to 0 and raised 
dynamically after a sufficient number of itemsets with 
higher utilities has been captured during the generation of 
PKHUIs. 

 (3) Identification of top-k HUIs from the set of PKHUIs. 

After identifying PKHUIs, TKU calculates the utility of 
PKHUIs by scanning the original database once, to identify 
the top-k HUIs. At this stage only the candidate itemset X is 
considered, if its estimated utility value reached after 
phase I is not less than min_utilBorder. Thus the top K high 
utility itemsets are identified. 
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3.2 TKO Algorithm 

The second algorithm that is under discussion is TKO 
(mining Top-k utility itemsets in One phase). It can 
discover top-kHUIs in only one phase. It utilizes the basic 
search procedure of HUI-Miner and its utility-list structure 
[9]. Whenever an itemset is generated by TKO, its utility is 
calculated by its utility-list without scanning the original 
database.. The utility-lists of items are called initial utility-
lists, which can be constructed by scanning the database 
twice In the first database scan, the TWU and utility values 
of items are calculated. During the second database scan, 
items in each transaction are sorted in order of TWU 
values and the utility-list of each item is constructed. TKO 
initially sets the min_utilBorder threshold to 0 and 
initializes a min-heap structure TopK-CI-List for 
maintaining the current top-k HUIs during the search. The 
algorithm then scans database twice to build the initial 
utility-lists. Then, TKO explores the search space of top-k 
HUI using a procedure named Top K-HUI-Search. It is the 
combination of a novel strategy named RUC (Raising 
threshold by Utility of Candidates) with the HUI-Miner 
search procedure [10]. During the search, TKO updates the 
list of current top-k HUIs in TopK-CI-List and gradually 
raises the min_utilBorder threshold by the information of 
TopK-CI-List. When the algorithm terminates, the TopKCI-
List captures the complete set of top-k HUIs in the 
database. 

4. PROBLEM DEFINITION 

Let I = {I1, I2, I3…….Ip} be the set of items used in database 
and D = {T1, T2, T3……Tm} is a set of transaction used in 
transaction database. Where each transaction Td in 
transaction database have a unique identifier d, called Tid. 
The quantity and profit of item Ik(1 <=k ”<= p) is denoted 
by q(Ik) and p(Ik) respectively. An itemset Y is a set of all 
distinct items which is a subset of I. Table 1 shows 
example of transaction database and the unit profit of item 
in transaction 
 

Table -1. An Example of Transaction Database 

 

TID Transaction 
T1 (A,1) (B,1) (C,4) (D,1) 
T2 (B,1) (D,3) 
T3 (A,2) (D,1) 
T4 (C,1) 
T5 (A,1) (B,2) (D,1) (E,3) 
T6 (A,1) (B,1) (C,1) (D,1) (E,1) 
T7 (B,2) (C,3) (E,1) 
T8 (D,1) (E,2) 
T9 (A,7) (C,1) (D,1) 
T10 (B,1) (C,1) (D,1) (E,1) 

 

Table -2.Unit profit Item 

A B C D E 
3 10 1 6 5 

 

The utility of item Ik in transaction Td is denoted as u(Ik, 
Td) and defined as: 

 
u(Ik, Td) = q(Ik, Td) ×p(Ik) 
 

The utility of itemset in a transaction Td is denoted as u(Y, 
Td) and defined as the summation of utility of all the 
items present in the transaction. 
The utility of an itemset Y in a database D is denoted as 
u(Y) and defined as the summation of utility of the 
itemset in all the transactions. 
The transaction utility of a transaction Td is denoted as 
TU (Td) and defined as the summation of utility of all 
items present in the transaction. Transaction utility of 
above transactions is shown in Table 3. 
 

Table -3.Transaction utility of transaction 

 

TID Transaction TU 
T1 (A,1) (B,1) (C,4) (D,1) 23 
T2 (B,1) (D,3) 28 
T3 (A,2) (D,1) 12 
T4 (C,1) 1 
T5 (A,1) (B,2) (D,1) (E,3) 44 
T6 (A,1) (B,1) (C,1) (D,1) (E,1) 25 
T7 (B,2) (C,3) (E,1) 28 
T8 (D,1) (E,2) 16 
T9 (A,7) (C,1) (D,1) 28 

T10 (B,1) (C,1) (D,1) (E,1) 22 
 

The Transaction weighted utility (TWU) of an itemset Y is 
denoted as TWU(Y) and is defined as the summation of TU 
of the transactions in which the itemset is present. 

Table -4.Transaction weighted utility of items 

Item A B C D E 
TWU 132 170 127 208 135 
 
Transaction-weighted utility of itemset supports 
antimonotone property. Transaction-weighted utility is 
calculated in Table 4. The Transaction-weighted utility 
are then arrange in descending order according to their 
transaction utility as shown in Table 5. It indicates that 
TWU of any superset of Y cannot be greater than Y and 
this property is called Transaction- weighted Downward 
Closure property. 
 

Table 5. Rearranging the item with respect to TWU 
 

Item TWU 
D 208 
B 170 
E 135 
A 132 
C 127 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 04 | Apr 2020                  www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 6489 

The Minimum utility of an item in transaction Td is 
defined as the occurrence of the minimum utility value of 
the item in the database. 
 

Table 6. Items and MIUs 
 

Item A B C D E 
MIU 3 10 1 6 5 

 
The Maximum utility of an item in transaction Td is 
defined as the occurrence of the maximum utility value of 
the item in the database. 
 

Table 7. Items and MAUs 
 

Item A B C D E 
MAU 21 20 4 18 15 

 

In first scans, it finds out transaction utility of transaction 
and it also computes TWU of each and every item and in 
second scan it reorganizes the transaction and constructs 
the Up Tree. The rearrangement of item is done according 
to their TWU as shown in the above Table 5. 
 
Next step is performed in three steps, in the very first 
step calculate MIU item. The MIU item is calculated in 
Table 6.In the second step calculate MAU of item. The 
MAU item is calculated in Table 7 .After that Pre-
Evaluation Matrix (PEM) is generated. If the k th value in 
pre evaluation matrix is higher than calculated the 
minimum utility border value then minimum utility 
border is set to kth highest value of pre evaluation matrix. 
The pre-evaluation matrix is shown in Table 8 
 

Table -8.Pre EvaluationMatrix 

Item B C D E 
A 49 33 66 26 
B  59 102 90 
C   31 20 
D    59 
E     

 
In the final step, it generates top-k high utility itemsets. 
TKU uses UP Tree where as TKO uses utility list and 
generate the top- k HUIs in one step 
 

5. HIGH AVERAGE UTILITY ITEMSET MINING 
(HAUIM) 

The result of HUIM has itemsets generated with a long 
length. However, as the length of the itemset increases, its 
utility tends to be larger since the utility of an itemset is 
the sum of the utility of each item that it contains. 
Therefore, HUIM mainly suffers from generating a large 
number of itemsets with long lengths. In addition, 
because of the nature of the utility measurement in HUIM, 
most of the discovered HUIs may contain items with low 
utilities. To address these limitations, the concept of high 

average-utility mining (HAUIM) was introduced with a 
more fair measurement named average-utility [11]. The 
average-utility of an itemset is derived by dividing its 
utility to the number of its items. An itemset is considered 
as a high average-utility itemset (HAUI) if its average-
utility value is no less than a given minimum utility 
threshold (minUtil). 
 
A typical HAUIM approach aims to find a complete set of 
HAUIs based on a given minUtil threshold. This process is 
computationally complex due to anti-monotonic 
characteristic of average-utilities of itemsets. The first 
proposed algorithm to mine HAUIs is the Two-phase high 
average-utility pattern mining (TPAU) algorithm [11]. But 
the HAUIM algorithms need long execution times and 
large amounts of memory to perform their mining tasks, 
especially when the database size is large or the minimum 
utility threshold is low. Hence to enhance the efficiency of 
solving the problem of mining HAUIs, efficient strategies 
have been developed, [3]such as :  

(1) Introducing more effective upper-bounds and pruning 
strategies for early pruning unpromising itemsets from 
the search space  

(2) Proposing efficient data structures for reducing the 
memory consumption and the cost of database scans in 
addition to avoid the costly join operations  

(3) Developing an effective mining method to discover the 
complete and correct set of HAUIs by utilizing all the 
strategies mentioned above together 

In the algorithm, the anti-monotone property is used to 
decrease the number of itemsets to be scanned level by 
level. There are two phases in the algorithm. In phase 1, 
the average-utility upper bound is used to overestimate 
the itemsets. The average-utility upper bound is an 
overestimated utility value instead of actual utility value. 
The average-utility upper bound can ensure the anti-
monotone property. Thus, each subset of an itemset with 
high average-utility upper bound must be high; each 
superset of an itemset with low average-utility upper 
bound must be low. It can thus prune many low average-
utility upper bound itemsets level by level and decrease 
the time to scan a database. 

In phase 2, we need to scan the database once to check the 
result of phase 1 is actually high or not. The algorithm first 
finds all the candidate average utility 1-itemsets C1. The 1-
itemsets whose average-utility upper bound is larger than 
or equal to minimum average-utility threshold are put in 
the set of candidate average-utility 1-itemset C1. 
Candidate average-utility 2-itemsetsC2 are formed 
fromC1. The algorithm then checks all the candidate 
average-utility 2-itemsetsC2 by comparing the average-
utility upper bound with the minimum average-utility 
threshold. The itemsets which do not exceed the minimum 
average-utility threshold are removed from the candidate 
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2-itemsets. The same procedure is repeated until all the 
itemsets have been found. Then we calculate the actual 
average-utility value of each candidate average-utility 
itemset. If the itemset is larger than or equal to the 
minimum average utility threshold, put it in the set of high 
average-utility itemsets. 

Consider the above example with alternate representation 
of the Database as shown in Table 9. 

Table 9: Alternate representation of Database 

TID A B C D E 
T1 1 1 4 1 0 
T2 0 1 0 3 0 
T3 2 0 0 1 0 
T4 0 0 1 0 0 
T5 1 2 0 1 3 
T6 1 1 1 1 1 
T7 0 2 3 0 1 
T8 0 0 0 1 2 
T9 7 0 1 1 0 
T10 0 1 1 1 1 

 

The utility value of each item occurring in each transaction 
in Table 9 is calculated. Take item B in transaction 7 as an 
example. The quantity of item B in transaction 7 is 2, and 
its profit is 10. The utility value of B is thus calculated as 
2*10 which is 20. The utility values of all the items in each 
transaction are shown in Table 10. 

The utility values of the items in each transaction are 
compared and the maximal utility value in the transaction 
is found. The maximal utility value in each transaction is 
shown in Table 10 

Table 10: Utility values and Maximal utility 

TID A B C D E Maximal 
Utility 

T1 3 10 4 6 0 10 
T2 0 10 0 18 0 18 
T3 6 0 0 6 0 6 
T4 0 0 1 0 0 1 
T5 3 20 0 6 15 20 
T6 3 10 1 6 5 10 
T7 0 20 3 0 5 20 
T8 0 0 0 6 10 10 
T9 21 0 1 6 0 21 

T10 0 10 1 6 5 10 
 

The average-utility upper bound of 1-itemsets is 
calculated. Take item A as an example. It appears in 
transactions 1, 3, 5, 6 and 9. The average-utility upper 
bound of A is thus the total amount of the maximal utility 
values of these transactions. It is calculated as 10 + 6 + 20 
+ 10 + 21, which is 67. The upper bound values of all the 

items are shown in Table 11. 
 

Table 11:The candidate average-utility 1-itemsets,C1 
 

Candidate 1-Itemset Avg. utility upper bound 
A 67 
B 88 
C 72 
D 105 
E 70 

 
Check whether the average-utility upper bound of  
1-itemsets is larger than or equal to user-defined 
minimum average-utility threshold k, which is 45.4. In 
this example, the average-utility upper bound of 1-
itemsets exceeds the minimum average-utility threshold 
k. All the items are recorded as candidate average-utility 
1-itemsets,C1. 
 
The candidate average-utility 2-itemsets (C2) are then 
generated from C1. They are {AB}, {AC}, {AD}, {AE}, {BC}, 
{BD}, {BE}, {CD}, {CE}, {DE}. The average-utility upper 
bound of each 2-itemset is calculated. Take the itemset 
{AB} as an example. It appears in transactions 1, 5 and 6. 
The average-utility upper bound of {AB} is thus the total 
amount of the maximal utility values of these 
transactions as 10 + 20 + 10, which is 40. The average-
utility upper bound of each 2-itemset is thus checked 
against the user-defined minimum average-utility 
threshold k. In this example, the itemsets {AB}, {AC}, 
{AE} and {CE} do not exceed k. These itemsets are thus 
removed from C2. The remaining candidate average-
utility 2-itemsets are shown in Table 12. 
 

Table 12:The candidate average-utility 2-itemsets,C2 
 

Candidate 2-Itemset Avg. utility upper bound 
AD 67 
BC 50 
BD 68 
BE 60 
CD 51 
DE 50 

 
C3 is then generated from C2 Since the average-utility 
upper bounds of both the two candidate 3-itemsets are 
less than k, they are removed from C3 and C3 becomes 
null. 
 
The actual average-utility value au’s of each candidate 
average-utility itemset is calculated. Take the itemset 
{AD}as an example. The actual utility values of items A 
and D in transaction 1 are 3 and 6, respectively. Since the 
itemset {AD} contains 2 items, its actual average-utility 
value in transaction 1 is calculated as (3 + 6)/2, which is 
4.5. The itemset {AD} appears in transactions 1, 3, 5, 6 
and 9. The actual average-utility value of {AD} is thus the 
total amount of actual average-utility values of these 
transactions. The value is calculated as (9 + 12 + 9 + 9 + 
27)/2, which is 33. The actual average-utility value of 
each candidate average-utility itemset is shown in Table 
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13. 
 

Table 13: Actual Average utility values of average 
candidate itemset. 

 
Candidate itemset Actual average utility 

A 36 
B 80 
C 11 
D 60 
E 40 

AD 33 
BC 29.5 
BD 51 
BE 45 
CD 15.5 
DE 29.5 

 
The actual average utility value of each candidate average 
utility itemset is then compared with the user defined 
minimum average-utility threshold k. In this example the 
actual average –utility values of itemsets {B}, {D} and 
{BD} are larger than or equal to k. They are thus put into 
the set of high average-utility itemsets, H, as shown in 
Table 14. 
 

Table 14: High average utility itemsets. 
 

High Average Utility 
Itemsets 

Average utility 

B 80 
D 60 

BD 51 

 
Thus the high average utility itemsets can be mined from 
the transactional database 
 

6. CONCLUSION 
 

High-utility itemset mining (HUIM), which is an extension 
of well-known frequent itemset mining (FIM), takes into 
account utilities (such as, unit quantities and unit profits) 
of the itemsets. However HUIM leads to the generation of 
huge number of itemsets with long lengths. To address 
this problem and extract more meaningful results, the 
concept of high average-utility itemset mining (HAUIM) 
was introduced.It is observed that HAUIM gives better 
results as compared to HUIM. The further work can be 
directed to improve the efficiency of high average utility 
mining algorithms. 
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