
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 985

Cross-site Scripting on Banking Application and mitigating attack using
Honey Encryption Standard

Gopinath M.P.1*, Shenbagavadivu S.2, Hemanth Raj N3, Karthick V.C.4, Hari Prasad G5

1,3,4,5UG Students, Department of Information Technology, SRM Valliammai Engineering College, Tamil Nadu, India
2Assistant Professor, Department of Information Technology, SRM Valliammai Engineering College,

Tamil Nadu, India
---***--
Abstract - The rapid increase in the amount of data used in
real-time applications and the advent of technologies such as
Big Data has revolutionized today’s data-driven world and has
enabled the process of integrating such huge quantity of data
with real-time applications. But, with such data comes the
added issue of privacy which involves protecting such sensitive
data from malicious fraudsters. This so-called secure data
storage was achieved with the help of a process known as
encryption. The problem associated with this technique is that
it is highly vulnerable to password-based attacks. The
attacker, on inputting a wrong key, receives an invalid
plaintext message as a result of decryption. This enables the
attacker to further proceed with the attack as the plaintext for
the guessed key looks invalid. This paper proposes a technique
known as Honey Encryption (HE) where the attacker gets
redirected to a page comprising fake details of user accounts
in case of a bogus attempt to log into the system. An online
banking system has been developed in order to design,
implement and evaluate the honey encryption mechanism.

Key Words: Honey encryption, password-based attacks,
brute force, cross-site scripting, cryptography

1. INTRODUCTION

In today’s world, with the advent of digital technology, there
has been an enormous rise in the amount of data generated
by a vast number of applications. This tremendous increase
has affected the industrial and corporate sectors in two
primary aspects – one being the inevitable need of a huge
number of resources for storage and the other being how
securely the data can be stored. With the emergence of
technologies such as big data and cloud computing, the
former problem has been somewhat resolved with terms
such as “data tsunami” being more commonly used in our
day-to-day lives. But, having such large amount of data has
made its security even more difficult. One tiny bug in a code
may lead to the complete destroyable of data within a
fraction of seconds. Therefore, it becomes equally important
to secure the data, be it on premise, off-premise or in a
specific configuration of a cloud, so that attackers can be
prevented access to sensitive data and that data breaches
can be less common.

With attacks such as brute force and denial of service
becoming more and more common, the development of an
effective and efficient detector system is of primary concern.
Brute force attacks, in general, generate a large number of
traffic as the attacker tries different combinations of
usernames and passwords in order to successfully gain
access into the application. This type of attack is known as a
dictionary attack where the attacker uses a dictionary of
already used most common usernames and passwords until
a login attempt turns successful. This continuous application
of a large number of combinations generate considerably
large network traffic making the target server slow to
respond to legitimate requests and in the worst case leading
to the complete failure of the server due to a crash. Though
many approaches have been already proposed, they provide
security at the cost of other attributes. For example, current
banking systems tend to block user accounts if more than
three wrong guesses are made on the user’s part. Though
this blocks the user’s account and provides a temporary
solution, legitimate users may sometimes fall prey to this
approach in case of a hacker brute forcing their credentials.
This involves physical approach needed to be taken by the
bank client in order to gain back access to the account.

In this paper, an efficient approach called Honey Encryption
(HE) has been proposed which will be discussed in the
following sections.

1.1 OBJECTIVE

The objectives of the proposed system include,

 Implementing a banking system with real-time
features.

 Mitigation of Cross-site scripting techniques by
fraudsters.

 Using HE to prevent access into credible bank
accounts by malicious hackers.

 Encryption of bank details to provide wrong
information to those with illegal access to
legitimate bank accounts.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 986

1.2 CHALLENGES

The challenges associated with the proposed system involve,

 In certain cases, such as ones involving very small
message spaces, HE might fail thereby making the
underlying data vulnerable to exploiters.

 In cases involving very large message spaces, it
would take a large amount of time in order to finish
the encryption and decryption process.

 As there is no central authority such as an admin
involved, cases involving the leakage of original
information rather than fake information might lead
to privacy issues as the data would have already
been in the hands of an attacker before the admin
and the user getting notified.

 There might arise situations involving the blocking
of legitimate user accounts in case the hacker
bypassed the defence system thereby falling back to
traditional account blocking approach.

 If the aforementioned situation takes place, then HE
falls back to traditional technique where a higher
authority such as a bank admin takes control of
permanently deactivating or reactivating the
account again.

2. LITERATURE SURVEY

[1] Fawaz Mahiuob Mohammed Mokbal, Wang Dan,
Azhar Imran, Lin Jiuchuan, Faheem Akhtar, and Wang
Xiaoxi propose a method that detects Cross Site
Scripting using Multilayer Perceptron Technique. - The
authors propose a method that detects Cross Site Scripting
using Multilayer Perceptron Technique. This paper utilizes
quality of data, appropriate feature vectors and ANN
technique for the detection process.

[2] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu
Nanyang Technological University, Singapore ‘Skyfire:
Data-Driven Seed Generation for Fuzzing’ – 2017 IEEE
Symposium on Security and Privacy This paper propose a
novel data-driven seed generation approach, named Skyfire,
which leverages the knowledge in the vast amount of
existing samples to generate well-distributed seed inputs for
fuzzing programs that process highly-structured inputs.

[3] Michele Carminati, Mario Polino, Andrea Continella,
Stefano Zanero – Politecnico di Milano “Security
Evaluation of a Banking Fraud Analysis System” examine
Banksealer, a decision support system for banking fraud
analysis, This paper is based on evaluating the influence on
the detection performance of the granularity at which the
spending habits are modelled and its security against evasive
attacks.

[4] Ari Juels_ and Thomas Ristenpart University of
Wisconsin–Madison“Honey Encryption: Security Beyond
the Brute-Force Bound” introduces honey encryption

(HE), a simple, general approach to encrypting messages
using low min-entropy keys such as passwords.

[5] Peter Kairouz, Pramod Viswanath ECE Department,
University of Illinois at Urbana-Champaign, Urbana, IL
61801 USA. Sewoong Oh IESE Department, University of
Illinois at Urbana-Champaign, Urbana, IL 61801 USA
“The Composition Theorem for Differential Privacy” -
In this paper, we answer the fundamental question of
characterizing the level of overall privacy degradation as a
function of the number of queries and the privacy levels
maintained by each privatization mechanism.

[6] Tan Soo Fun -University Malaysia Sabah (UMS) Zarul
Fitri Zaaba, Azman Samsudin Unibersiti Sains Malaysia
“Enhanced Security for Public Cloud Storage with Honey
Encryption” , this paper reviews the attack models and
security defenses mechanisms of existing public cloud
service providers. Subsequently, this paper extends the
Honey Encryption scheme to enhance the file storage
security on the public cloud computing.

[7] Abiodun Esther Omolara, Aman Jantan, Oludare Isaac
Abiodun and Howard Eldon Poston “A Novel Approach
for the Adaptation of Honey Encryption to Support
Natural Language Message” Though these techniques
provide confidentiality, they do not provide resilience
against brute-force attacks. Honey encryption (HE) was
proposed as a countermeasure to this problem of
cryptography.

[8] Wei Yin, Jadwiga Indulska, and Hongjian Zhou North
China Institute of Computing Technology, Beijing, China
School of ITEE, The University of Queensland, Brisbane,
QLD, Australia “Protecting Private Data by Honey
Encryption” proposes the design of the distribution-
transforming encoder (DTE). According to the probabilities
of a message in the message space, it maps the message to a
seed range in a seed space, then it randomly selects a seed
from the range and XORs it with the key to get the cipher
text.

3. MODULE DESCRIPTION

3.1 CLIENT MODULE
In this module, the existing user can login to the banking
application. The user need to enter the username and
password that has been sent by the bank via email. They can
perform transactions and manage their account.

3.2 ADMIN MODULE
In this module, we are going to monitor the customers’
accounts and providing security to their accounts using
honey encryption. The admin account has special privileged
rights in order to deactivate and reactivate any accounts, if
found suspicious.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 987

3.3 TRANSACTION MODULE
This module is used to create transactions for entry/release,
billing, and account transferring. Customer can initiate a
single transaction (with single debit and single credit) or add
a group of such transactions and submit the group. Each
transaction in such a group will be treated as independent
transaction for limit purpose.

3.4 BLOCKED ACCOUNTS MODULE
This module helps to unblock the blocked accounts that are
handled by the admin. It maintains a log of accounts that
have been blocked.

3.5 INTRUDER MODULE
This module handles the unauthorized users to fool them by
giving fake details whenever the suspicious user attempts to
steal data. This also gives the identity of the intruder which
can be captured.

4. ARCHITECTURAL DESIGN

The architecture of HE is shown in Fig -1. The actors
involved in the system include Bank Database, Bank/Server
Admin, Client and Hacker/Attacker. The various actions that
can be performed between these actors include (1) Creating
Client account and storing in Database (2) Mailing account
credentials to respective clients (3) Clients logging into
accounts in order to perform bank related actions (4) Hacker
or attacker logging with illegal activity (5) Blocking the IP
address/account of suspicious users. (6) Reporting illegal
activity to the associated client and bank admin (7)
Redirecting attackers to fake page using HE.

4.1 EXISTING SYSTEM

Traditional system of blocking accounts on wrong
passwords tried for n attempts for hourly basis. System
vulnerable to XSS based attacks. Legitimate users get
blocked from accessing without their knowledge.
Unauthorized users tries to access the legitimate account
and gets the account blocked. Stealing of information in case
of successful login by attacker. Existing system has Two
Factor Authentication system for authentication.

4.2 PROPOSED METHOD

The proposed system of the use of Honey Encryption (HE)
for preventing brute force and other password-based attacks
works as follows. To implement this technique in order to
mitigate such attacks, an online banking system architecture
was built as a testbed in order to test the strategy in real-
time. A banking system with options of creating and
modifying accounts, transferring funds between registered
accounts with additional options of knowing the account
balance and so on was developed with the help of web tools.
The system included the creation of also an admin account
which enabled the bank admin to block suspicious accounts

and reactivate wrongly blocked accounts. The admin had the
rights of sending a registered user his/her credentials, the
username and password respectively, on successful
registration. Once some kind of suspicious activity such as a
brute force attack is noted by the admin, the IP address
associated with the activity can be traced and further login
attempts from that particular address can be prevented by
black-listing the IP address. Also, cross-site scripting attacks
such as cookie stealing and so on are some of the
vulnerabilities associated with web applications, more
specifically banking applications.

Hackers use some of the flaws associated with popular
websites by first analyzing the website. Then, they go on
with the attack phase by carrying out various attacks such as
SQL injection, XSS and password cracking attacks in order to
break the system and thereby gain access to the data stored
in the backend database.

Fig -1: Architecture Diagram

SQL injection is popularly used by attacking injectable
webpages by slightly modifying the query request passed to
a page. This in turn renders unexpected results, in some
cases displaying all the user credentials associated with the
database of the website.

Therefore, it is important that applications built for
protecting information must prevent injection attacks by
deploying techniques such as input validation, escaping
queries, preventing dynamic queries and using prepared
statements. Another method most prevalently used for
stealing important data pertains to cross-site scripting also
known by XSS. In this case, the attacker loads malicious
scripts in some other page which tries to send a request to
the target application with the aim of gaining access to the
elements such as scripts and the objects associated with the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 988

target web application for the purpose of stealing cookies
and modifying information.

All the browsers have same origin policy. Once a web page is
logged in, we need not provide authentication details for
every page in it, since they have same origin. Interaction
between webpages from different domains can be through
links, as the whole internet concept works on this method.
Web documents can be accessed using DOM object. A DOM
object from one domain cannot access contents on another
domain. Same origin can be defined by Protocol, Hostname,
Port but however URL’s path is not considered part of the
origin. For example, consider the following tag <script src =
"app/some_url"></script> present in a site deployed by an
attacker. This script is considered to have originated from
attacker site due to same origin policy and not from the
application. This allows attackers to initiate HTTP requests
directly to the application’s website thereby rendering
malicious activity with the identity of a real user.

Cookie authentication is used in most of the web
applications. There is a lifetime for cached cookies and HTTP
authentication credentials. Let us consider a situation where
a user has opened two tabs in a browser. Consider one tab
has an online banking web page and the other has some
news page. Cookie and session token for the banking
application is stored in the browser. If some attackers
manipulate the user to access the banking application from
the advertisements on the news page, the attacker page may
capture the cookie information and have a possibility to
access the banking application using the identity of a
registered user. Existing systems seem to be vulnerable to
these type of attacks.

On the whole, there has to be some defense mechanism
present in the application so that such dangerous threats can
be averted in the future.

4.2. Online Banking System

This section consists of implementing an online system for
banking with secure storage using popularly used
development tools and techniques and explains about the
process involved in case of an attack.

4.2.1 Implementation of MVC pattern for
development of a web application

Model-View-Controller (MVC) resembles an architectural
pattern most commonly used in the development of web
applications. MVC gives the developer three primary layers
to work with: (1) Model (2) View and (3) Controller. This
model is popularly used as a standard design pattern in the
web development process as it represents a complete
framework. MVC model provides three different types of
classes namely,

1) Model - The logic of data domains are mainly developed
using the help of these model classes. The insertion,
updation and retrieval of data into the database associated
with the web application are carried out using the classes
available in the model.
2) View – The primary aim of providing an easy-to-use and
visually stunning user interface can be guaranteed with the
use of classes of views. This interface allows bi-directional
communication between the user and the application on the
whole.
3) Controller - Controller classes are used to respond to the
user’s requests. Controller classes perform the users
requested actions. These classes work with model classes
and select the appropriate view that should be displayed to
the user according to user requests.

4.2.2 Data Encryption using MD5 Algorithm

Once the banking application is created and deployed for
real-time use by public customers, the bank administrator
can help with the creation of user accounts in case users opt
for one. This can be initiated by directly visiting the desired
bank or by contacting the respective admin through any
digital system. During the account creation process by the
admin, the data which has been input into the system are
encrypted for enabling a safe and secure storage mechanism.
The proposed mechanism uses MD5 technique for storing
passwords and data alike the backend database securely.
The MD5 algorithm in cryptography is a one-way function
accepting a message with its length as input and returning a
message digest of fixed-length in order to authenticate the
original message.

4.2.3 Hosting of the system on third-party Cloud
Environment

In order to achieve the state attained by real-time systems,
the application was hosted in a cloud environment ref Fig -2.
The cloud environment can be of three types – private,
public and protected. This banking application was deployed
in a public cloud so as it provides continuous access to public
users and users of other organizations. A cloud helps in
balancing the load, providing fault tolerance and scaling
resources on demand by using the already available
components such as load balancers and techniques such as
migration. On the developer’s part, only the cloud provider
and the type of service to be utilized has to be chosen. The
cloud service provider will take care of the environment,
rightful deployment and automatic update in the cloud
environment.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 989

Fig -2: Hosting the banking application on a third-party

cloud

4.2.4 Capturing IP addresses and image if possible,
of suspicious client

In case of a brute force attack being detected, the system
captures the IP address of the device trying its hand in the
process. This can be performed by capturing the object from
which the address of the suspicious client can be extracted.
Once this is complete, the application blocks the device
involved in this attempt from future access to the web
application. Also, if possible, using the web camera access on
the client-side systems, the image of the suspicious client can
be taken, processed and transmitted to necessary actors for
further action in the process.

4.2.5 Reporting suspicious access to bank
administrator and client

After the execution of the aforementioned steps, the
information regarding the suspicious login attempt is then
forwarded to the bank administrator, the rightful owner of
the account and other necessary actors. The rightful client
can then approach the associated bank directly in order to
request the service pertaining to reactivation of the blocked
account to the administrator which can be done on
successful verification.

4.3 Honey Encryption (HE)

This section puts forward the use of Honey Encryption in
diverting attackers to a fake page which consists of user
account information resembling data similar to real
accounts.

4.3.1 Creation of a fake page

In order to deceive the hacker/attacker in making them
believe that their login attempt was indeed correct and the
goal of gaining access into the system was successfully
achieved, the attackers were redirected to a fake page
consisting of some random banking details such as account

information ref Fig -3. This was done so that the brute force
attempts can be effectively thwarted rather than blocking
the accounts and IP address which is a really long process.
Also, blocking accounts in cases where even legitimate users,
without their knowledge, would have typed the wrong
password multiple times is a daunting task and reactivating
them is even more time-consuming. In the fake page attacker
cannot do any usual operations like money transaction,
balance enquiry, adding beneficiary and changing password.
The attacker would rather try again or take the fake data as
he would think it as original data. Only the legitimate user
knows whether the displayed data is original or not. This
method improves the security for authentication process and
further enhances the security.

Fig -3: Redirecting illegitimate login attempts to a fake
page

4.3.2 Encryption of client information

The data associated with the clients should be encrypted in
some form such that data is secure in case of a data breach
ref Fig -4. But, encrypting the data with some commonly
used techniques will lead to the attacker being aware of the
fact the key tried during the brute force process produced
some gibberish text. This makes the attacker to know that
the current key combination failed as the attacker reads
some wrong text instead of getting the intended plain text
message. This makes the attacker continue with the brute
force process encouraging to not stop until the intended
message has been retrieved. Therefore, the use of honey
encryption encrypts the message in such a way that the plain
text looks like a correct text but is actually some random
generated string.

Fig -4: Using HE message space to display fake
information

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 990

5. CONCLUSIONS

The existing system for preventing password-based attacks
such as Brute force attack, Cross site scripting attack, Man in
the middle attack deploy password-based mechanisms in
which attackers are alerted by invalid-looking plaintext. In
Honey Encryption, the messages displayed in case of
wrongly guessed key values resemble those from a similar
message space thereby fooling the attacker into believing
that the desired information has been achieved. This
technique is further extended by redirecting such attack
attempts to a fake page which consists of user account
information encrypted using HE. Even though HE has its own
advantages, it comes with certain limitations: (1) Storage of
a large number of messages to form the message space is a
complex process; (2) HE takes time to encrypt messages
where a large message space is involved.

REFERENCES

[1] Mokbal, Fawaz Mahiuob Mohammed, Wang Dan, Azhar

Imran, Lin Jiuchuan, Faheem Akhtar, and Wang Xiaoxi.
"MLPXSS: An Integrated XSS-Based Attack Detection
Scheme in Web Applications Using Multilayer Perceptron
Technique." IEEE Access 7 (2019): 100567-100580.

[2] Wang, Junjie, Bihuan Chen, Lei Wei, and Yang Liu.
"Skyfire: Data-driven seed generation for fuzzing." In
2017 IEEE Symposium on Security and Privacy (SP), pp.
579-594. IEEE, 2017.

[3] [3] Carminati, Michele, Mario Polino, Andrea Continella,
Andrea Lanzi, Federico Maggi, and Stefano Zanero.
"Security evaluation of a banking fraud analysis system."
ACM Transactions on Privacy and Security (TOPS) 21, no.
3 (2018): 1-31.

[4] Juels, Ari, and Thomas Ristenpart. "Honey encryption:
Security beyond the brute-force bound." In Annual
International Conference on the Theory and Applications
of Cryptographic Techniques, pp. 293-310. Springer,
Berlin, Heidelberg, 2014.

[5] Kairouz, Peter, Sewoong Oh, and Pramod Viswanath.
"The composition theorem for differential privacy." IEEE
Transactions on Information Theory 63, no. 6 (2017):
4037-4049.

[6] Fun, Tan Soo, Azman Samsudin, and Zarul Fitri Zaaba.
"Enhanced security for public cloud storage with honey
encryption." Advanced Science Letters 23, no. 5 (2017):
4232-4235.

[7] Omolara, Abiodun Esther, Aman Jantan, Oludare Isaac
Abiodun, and Howard Eldon Poston. "A novel approach
for the adaptation of honey encryption to support natural
language message." In Proceedings of the International
MultiConference of Engineers and Computer Scientists,
vol. 1. 2018.

[8] Yin, Wei, Jadwiga Indulska, and Hongjian Zhou.
"Protecting Private Data by Honey Encryption." Security
and Communication Networks 2017 (2017).

