
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5341

Efficient Load Balancing in a Distributed Environment

Ankit Kumar Singh1, Dhairya Kalpeshbhai Patel2, Kaustumbh Jaiswal3, Dr. Ram Mohan Babu4,

Shikhar Sharma5

1,2,3,5B.E. Student, Dept. of Information Science and Engineering, Dayananda Sagar College of Engineering,
Kumaraswamy Layout, Bengaluru, India

4HOD, Dept. of Information Science and Engineering, Dayananda Sagar College of Engineering, Kumaraswamy
Layout, Bengaluru, India

---***--

Abstract - Cloud computing is an emerging paradigm in
computing. It aims for the transparent sharing of data,
calculations and service over a scalable node network. Since
cloud computing stores the data in the open environment and
disseminates the resources, the quantity of data storage is fast
growing. Load balancing is a key issue within cloud storage.
Maintaining load information will consume a lot of cost as the
network is too large to spread load in a timely manner. Load
balancing is one of the main challenges in cloud computing
that is required to spread the distributed workload over
several nodes to ensure that no single node is overloaded. It
helps in optimum resource utilization and thus in improving
system performance. With effective job scheduling and
resource management techniques, a few existing scheduling
algorithms can preserve load balance and provide better
strategies as well. To achieve maximum profits with
automated load balancing algorithms, it is necessary to make
efficient use of resources. This paper addresses some of the
current algorithms for load balancing in cloud computing.

Key Words: cloud computing, load balancing, dynamic
workload.

1. INTRODUCTION

Significant advances in computer technology have
led to increased demand for high-speed computing and the
need for fast scalability, availability and rapid response. It
led to the use of parallel and distributed computing systems
where the job is performed concurrently by more than one
processor. Effective strategy to spread workload across
multiple processors is one of the main research issues in
parallel and distributed systems. Load balancing is used to
minimize response time, optimize the performance and
prevent overload. Load balancing is designed to ensure that
every processor in the system does about the same amount
of work at any time.

2. LOAD BALANCING

Load balancing is a relatively new technique
facilitating networks and resources by delivering maximum
throughput with minimum response time. Dividing traffic
between servers allows data to be sent and received without
any significant delay. There are various types of algorithms
that help load traffic between available servers. Websites

may be linked to a basic example of load balancing in our
daily lives. The users could encounter delays, timeouts and
possibly long device responses without load balancing. Load
balancing solutions usually apply redundant servers which
help to better distribute communication traffic so that the
availability of the website is certainly settled. There are many
different types of algorithms for load balancing available
which can be classified primarily into two categories, static
and dynamic.

2.1 Static Algorithms

Static algorithms equivalently divide the traffic between
servers. Through this strategy the traffic on the servers will
be quickly disdained and thus the situation will become more
imperfect. This algorithm is named as round robin algorithm,
which splits the traffic equally. There have been many
problems in this algorithm, however so weighted round robin
was described to enhance the crucial round robin challenges.
Every server was assigned a weight in this algorithm and
obtained more connections according to the highest weight.
Servers will receive balanced traffic in a situation where all
the weights are equal.

Before you begin to format your paper, first write and
save the content as a separate text file. Keep your text and
graphic files separate until after the text has been formatted
and styled. Do not use hard tabs, and limit use of hard returns
to only one return at the end of a paragraph. Do not add any
kind of pagination anywhere in the paper. Do not number text
heads-the template will do that for you.

2.2 Dynamic Algorithms-

Dynamic algorithms assigned appropriate weights on
servers and chose to balance the traffic by finding a lightest
server in the entire network. Selecting a suitable server,
however, involved real-time contact with the networks,
resulting in additional traffic being introduced to the system.
Comparing these two algorithms, though round robin
algorithms based on simple rule, this resulted in more loads
conceived on servers and therefore imbalanced traffic.
However; dynamic algorithm based on query that can be
done frequently on servers, but sometimes prevailing traffic
will prevent these queries from being answered and can be
distinguished accordingly by more overhead on network.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5342

2.3 Load Balancing in Distributed Systems-

Today more modern software development
methodologies are being used to improve usability of
applications embedded in distributed networks on
compatible hardware. To achieve this goal and enhance the
software infrastructure, middleware has been used to
facilitate portability and interpretability of the distributed
portion of the application. Middleware is defined as network
services and software components enabling the application
and networks to be scaled. Middleware has eased the task of
designing and developing and handling the distributed
applications by providing easy and integrated distributed
programming environment.

3. ISSUE IN LOAD BALANCING

The following issues are analyzed during load balancing:

a. The communication channels are of finite bandwidth
in the distributed environment and the processing
units may be physically distant, therefore load
balancing needs to decide whether or not to allow
task migration.

b. A computing job may not be arbitrarily divisible
which leads to certain dividing tasks constraints.

c. That job consists of several smaller tasks and may
have different execution times for each one of those
tasks.

d. The load on each processor as well as on the
network can differ from time to time, depending on
the users’ workload.

e. The capacity of the processors in architecture,
operating system, CPU speed, memory size and
usable disk space that vary from one another.

Taking into account the above factors the load balance can
be simplified into four basic steps:

a. Processor load and state control
b. Exchange of load and state data between processors
c. Calculating the distribution of new works
d. Actual movement in the data.

4. ADVANTAGES OF LOAD BALANCING

Some major advantages of load balancing are as follows:

a. It reduces the task waiting time.
b. It minimizes the time required to respond to tasks.
c. It maximizes the use of resources at the system.
d. It maximizes system performance.
e. This improves system reliability, and stability.
f. It's adjusting to future changes.
g. Long hunger for the small work is avoided.
h. The overall performance of the network is improved

in load balancing by improving the performance of
each node.

5. METRICS FOR LOAD BALANCING

Different measurements found in current load balance
techniques are discussed below-

a. Scalability is an algorithm's ability to perform load
balancing of any finite number of nodes for a
network. The metric needs to be improved.

b. Resource Use is used to test the resources use. For
efficient load balancing it should be configured.

c. Quality is used to test device performance. It needs
to be improved at a reasonable cost, e.g., while
maintaining sufficient delays, reducing task
response time.

d. Response Time is the amount of time taken in a
distributed system to respond by a given load
balancing algorithm. We will minimize this
parameter.

e. Overhead Associated determines the amount of
overhead involved while a load-balancing algorithm
is implemented. It is composed of overhead due to
work movement, inter-processor and coordination
between processes. This should be reduced to allow
for efficient operation of a load balancing technique.

The aim and motivation of this survey is to provide a

systematic review of existing load balancing algorithms and
to encourage the amateur researcher in this field to
contribute to the development of a more effective load
balancing algorithm. This will be of benefit to interested
researchers in carrying out further research in this area.

6. Load BALANCING ALGORITHMS

6.1 Round Robin

The processes in this algorithm [2] are divided among all
processors. In round robin order each cycle is allocated to the
processor. The process allocation order is kept locally
independent from the remote processor allocations. Although
the distribution of workloads between processors is the
same, the processing time for different processes is not the
same so some nodes can be heavily loaded at any point of
time and others remain idle. This algorithm is mostly used in
web servers where http requests are similar in nature and
are equally distributed.

6.2 Connection Mechanism

Load balancing algorithm [3] can also be based on the
least link mechanism that is part of the algorithm for dynamic
scheduling. To estimate the load it needs to dynamically
count the number of connections for each server. The load
balancer records each server's contact number. The number
of connections increases when a new link is routed to it, and
the number decreases when the connection is terminated or
timeout occurs.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5343

6.4 Randomized(RAND)

By fact the randomized algorithm is of a static kind.
Within this algorithm [2] a method can be treated with a
probability p by a particular node n. For each processor, the
process allocation order is maintained independently of
allocation from remote processor. This algorithm works well
in case of similarly loaded procedures. Problems arise when
loads are of different computational complexities.
Randomized algorithms do not uphold deterministic
approaches. As Round Robin algorithm generates overhead
for process queue it works well.

6.4 Equally Spread Current Execution Algorithm

Unit manage with priorities fairly distributed current
execution algorithm [4]. Distribute the load randomly by
testing the size and moving the load to a virtual machine that
is easily loaded or manages the job, taking less time and
optimizing the throughput. It is the method of spreading the
range in which the load balancer spreads the load of the job
in hand over multiple virtual machines.

6.5 Throttled Load Balancing Algorithm

Throttled algorithm [4] is entirely virtual machine based.
First, this client asks the load balancer to check the right
virtual machine that can easily access that load and perform
the operations that the client or user is giving. The client first
asks the load balancer to find a suitable Virtual Machine to
perform the necessary operation in this algorithm.

6.6 A Task Scheduling Algorithm Based on Load
Balancing

Y. Fang et al. [5] addressed a two-level task scheduling
system focused on load balancing to meet users ' complex
requirements and achieve a high utilization of resources. By
first mapping tasks to virtual machines and virtual machines
to host resources, it enables load balancing, thus enhancing
task response time, resource utilization and overall
environmental performance.

6.7 Biased Random Sampling

M. Randleset al. [6] explored a distributed and flexible
load balancing approach that uses random system domain
sampling to achieve self-organization, thus balancing the load
across all network nodes. Here a virtual graph is built,
reflecting the load on the server with the connectivity of each
node (a server is viewed as a node). Every server is
symbolized as a node in the graph, each being directed in
degree to the server's free resources. The load balancing
scheme used here is fully decentralized, making it ideal in a
cloud for such large network systems. With an increase in
population diversity the efficiency is reduced.

6.8 Min-Min Algorithm

It begins with a collection of unassigned tasks. First of all,
minimum completion time is to be found for all activities.
Then the minimum value is chosen from these minimum

times which is the minimum time on any resource among all
the tasks. Then the job on the corresponding computer is
scheduled according to that minimum time. The execution
time for all other tasks on that machine is then changed by
adding the execution time of the assigned task to the
execution times of other tasks on that machine and assigned
task is removed from the list of tasks to be assigned to the
machines. The same process is then followed again until all
the tasks are performed on the capital. But this strategy has a
major drawback which can lead to starvation [7].

6.9 Max-Min Algorithm

Max-Min is almost the same as the min-min algorithm
except for the following: after finding the minimum execution
times, the maximum value is chosen which is the maximum
time on any resource between all tasks. Then the job on the
corresponding computer is scheduled according to that
maximum time. The execution time for all other tasks on that
machine is then changed by adding the execution time of the
assigned task to the execution times of other tasks on that
machine, and the assigned task is removed from the list of
tasks to be assigned to the machines [7].

6.10 Token Routing

The main aim of the algorithm [9] is to reduce the cost of
the system by shifting the tokens around it. Yet due to
connectivity bottleneck, agents in a distributed cloud system
cannot have the necessary information to spread the
workload. So the distribution of workload between the agents
is not fixed. The token routing algorithm's drawback can be
removed with the help of token based load balancing
heuristic approach. This algorithm makes routing decision
quick and efficient. In this algorithm agent need not have an
idea of the complete knowledge about the working load of
their global state and neighbors. This method does not
involve any communication overhead.

6.11 Nearest Neighbor Algorithm

Each processor considers only its immediate neighbor
processors to execute load balancing operations with nearest
neighbor algorithm. Based on the load it has and the load
details to its immediate neighbors a processor takes the
balancing decision [11]. Through successively swapping the
load for the adjacent nodes the network maintains a globally
distributed state of operation. The nearest neighbor
algorithm is split primarily into two groups which are
method of diffusion and method of sharing of dimensions.
With this method a processor that is strongly or lightly
loaded balances its load concurrently with all its closest
neighbors at a time, while a processor balances its load
successively with its neighbor one at a time in dimension
swap form.

6.12 Adaptive Contracting with Neighbor (ACWN)

Once the workload is newly created, it is transferred to
the nearest neighbor processor which is least loaded. The
processor which accepts the load holds the load in its local
heap. If the load in its heap is smaller than its threshold level,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5344

otherwise it will transfer the load below the threshold load to
the neighboring processor. ACWN thus requires retaining
local load information as well as adjacent load information to
regularly swap the load. RAND is therefore different from the
ACWN in that ACWN always finds the target node that is least
loaded in the neighborhood [11].

6.13 Prioritized Random (PRAND) Algorithm

The workload is expected to be consistent in both RAND
and ACWN in the light of their statistical specifications.
Changes are made to the non-uniform workload on RAND
and ACWN to get RAND (PRAND) prioritized and ACWN
(PACWN) prioritized respectively. In these equations, index
numbers are allocated to the workloads based on the weight
of their heaps. PRAND is similar to RAND except that it
chooses from the heap the second largest weighted load and
passes it to a chosen neighbor at random. On the other hand,
PACWN chooses the second largest weighted workload and
moves it to the neighbor who is least loaded[11].

6.14 Cyclic Algorithm

This is the product of the slight modification of the
random algorithm. Cyclically the task is allocated to a remote
device. This algorithm also tells of the last device a procedure
was sent to.

6.15 Probabilistic

Every node carries a vector of load including the load of a
subset of nodes. The first half of the load vector which also
carries the local load is sent to a randomly selected node
periodically. When information is updated in this manner and
without transmission, the information can be distributed
over the network. Nevertheless, this algorithm's efficiency
isn't optimal, its extensibility is low, and insertion is delayed
[1].

6.16 Threshold and Least

THRESHOLD and LEAST, both use a partial knowledge
gained through the exchanging of messages. In THRESHOLD,
a node is randomly selected to accept a migrated load. If the
load is below the load level, the load acknowledged by that
load. Then, polling with another node is replicated to find a
suitable node to pass the load. If no suitable receiver has been
identified, the procedure is executed locally after a limited
number of attempts. LEAST is an instant of THRESHOLD, and
is chosen to obtain the migrated load after polling the least
loaded machine [1]. THRESHOLD and LEAST perform well,
and are basic in design. In fact, these algorithms use the up-
to-date load values.

6.17 Reception

In this algorithm, nodes below the threshold load consider
the overloaded node for migration load from overloaded
node by random polling.

6.18 Centralized Information and Centralized
Decision

In this class of algorithms the system information is
stored in a single node, and that single node also takes the
decision. CENTRAL is a subset of that algorithm. When a node
that is heavily loaded needs to move a task, it asks a server
for a node that is lightly loaded. The server machine is
informed by each node in the system whether or not a lightly
loaded node is available. CENTRAL delivers very efficient
results on performance [1]. But this algorithm suffers from a
very serious problem, that this algorithm will not provide any
facilities if the server crashes.

6.19 Centralized Information and Distributed
Decision

In GLOBAL, information gathering is centralized while
decision making is distributed [1]. Server broadcasts the load
situation on the nodes. Through this knowledge an
overloaded processor identifies the lightly loaded node
without going through the server from its load vector. Due to
the lower inclusion of message information, this algorithm is
very efficient and robust in nature, because the system
remains alive even when the server is in recovery. GLOBAL
algorithm gathers large amounts of information but the
information is not up to date. As a result, there are greater
overheads in the program.

6.20 Distributed information and Distributed
Decision

Each node in the system regularly transmits its load
condition, and each node maintains a global load vector. This
algorithm performs poorly. Both the information and the
judgment are transmitted in RADIO, and without coercion
there is no broadcast. A distributed list of lightly loaded
nodes in this algorithm in which each computer is aware of
its successor and predecessor. In addition, each node knows
the head of the available list, which is called the manager.
Migration of a network from a heavily loaded node through
the manager to the lightly loaded node is performed directly
or indirectly. Broadcasting happens when manager crashes
or when a node is added to the list available[1].

6.21 The Shortest Expected Delay (SED) Strategy

This strategy efforts to reduce the anticipated delay of
completion of each job so that the destination node is chosen
to minimize the delay. This is a greedy technique in which
each work fulfills its best interest and enters the queue that
can reduce the anticipated completion delay. This method
minimizes the average delay of any given batch of jobs with
no further subsequent delivery. SED does not reduce the
average time period for an ongoing process of arrival. To
evaluate the destination node the source node must collect
state information for location policy from other nodes.

6.22 Modified SED

 In the SED strategy communication delay is introduced. A job
experiences communication delay because of the transfer of
jobs from the source node to the destination node. Another
modification occurs because of a node's limited input queue

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 5345

size [6]. If a job is sent to a node whose input queue is
saturated, the job cannot enter the queue and will be
transferred to the second-best node, which may also saturate
the input queue, and so forth. If there is no node open for a
job then it is always moved to the original node. This work
will be temporarily held at this node if the queue remains
filled and tries to re-enter after a set interval of time. This
delay is considered in the modifies SED.

6.23 The Never Queue (NQ) Strategy

NQ policy is a different technique in which the source
system calculates the cost of sending a job to each final
destination or to a subset of final destinations, and the work
is put on the server at reduced cost [10]. This algorithm often
places a job on a server which is quickest available. This
algorithm minimizes the extra delay in successive arriving
workers, so that NQ policy minimizes the total delay. In
addition, a server does not transfer incoming work to servers
until the server is the fastest one available.

6.24 Modification of NQ strategy

NQ strategy is always keen to find the best idle server. If
no idle server is available it will pick the server with the
shortest expected delay. If a server is unable to accept the job,
it will be moved to another system, with the shortest
estimated wait, etc. If no server is finally found with the
shortest anticipated time, the job will be backed up to the
original server anyway. Because of the congestion of the
input queue the job may have to wait there temporarily. So
the job will get the chance after a certain interval of time
when the input queue has enough space to accommodate it.
This delay in is considered in modified NQ.

6.25 Greedy Throughput (GT) Strategy

This approach is distinct from Strategies for SED and NQ.
GT approach deals with the system's throughput which is the
number of jobs done per unit time would be maximum before
the arrival of new job instead of optimizing only the
throughput rate at the balancing moment. That is why this
program is called Greedy Throughput (GT) [10].

In this paper different load balancing techniques are

discussed thoroughly in detail. Load balancing in distributed
environment is one of the hottest areas of research as the
demand for heterogeneous computing is increasing with the
wise utilization of the web. The performance of the
computing system increases with the load balancing
algorithm. Here in this paper we have drawn a comparison
between Static Load Balancing(SLB) and Dynamic Load
Balancing(DLB) by introducing some parameters. Different
facilities of load balancing algorithms are enumerated in the
paper. Finally, we studied some of the most important DLB
algorithms and compared them to focus their importance in
different situations. There does not exist any algorithm
which is absolutely perfect but one can use one of the
algorithms mentioned above based on the situation. The
comparative study not only provides an overview of the load
balancing algorithms, but also offers practical guidelines to

researchers in designing the most efficient load balancing
algorithm for distributed environment.

REFERENCES

[1] Bernard G., Steve D. and Simatic M. “A Survey of Load

Sharing in Networks of Workstations”. The British
Computerm Society, The Institute of Electrical Engineers
and IOP Publishing Ltd, 75-86,1993.

[2] Zhong Xu, Rong Huang, (2009) “Performance Study of
Load Balanacing Algorithms in Distributed Web Server
Systems”, CS213 Parallel and Distributed Processing
Project Report.

[3] P.Warstein, H.Situ and Z.Huang(2010), “Load balancing
in a cluster computer” In proceeding of the seventh
International Conference on Parallel and Distributed
Computing, Applications and Technologies, IEEE.

[4] Ms.NITIKA, Ms.SHAVETA, Mr. GAURAV RAJ;
“Comparative Analysis of Load Balancing Algorithms in
Cloud Computing”, International Journal of Advanced
Research in Computer Engineering & Technology
Volume 1, Issue 3, May 2012.

[5] Y. Fang, F. Wang, and J. Ge, “A Task Scheduling Algorithm
Based on Load Balancing in Cloud Computing”, Web
Information Systems and Mining, Lecture Notes in
Computer Science, Vol. 6318, 2010, pages 271-277.

[6] T.R.V. Anandharajan, Dr. M.A. Bhagyaveni” Co-operative
Scheduled Energy Aware Load-Balancing technique for
an Efficient Computational Cloud” IJCSI International
Journal of Computer Science Issues, Vol. 8, Issue 2,
March 2011.

[7] T. Kokilavani J.J. College of Engineering & Technology
and Research Scholar, Bharathiar University, Tamil
Nadu, India” Load Balanced Min-Min Algorithm for
Static Meta-Task Scheduling in Grid Computing”
International Journal of Computer Applications (0975 –
8887) Volume 20– No.2, April 2011.

[8] Peter Mell, Timothy Grance, “The NIST Definition of
Cloud Computing”, NIST Special Publication 800-145,
September 2011.

[9] Zenon Chaczko, Venkatesh Mahadevan, Shahrzad
Aslanzadeh, Christopher Mcdermid (2011)“Availabity
and Load Balancing in Cloud Computing” International
Conference on Computer and Software Modeling IPCSIT
vol.14 IACSIT Press,Singapore 2011.

[10] Weinrib and Shenker S. “Greed is not Enough: Adaptive
Load Sharing in Large Heterogeneous Systems”.
INFOCOM, 986-994, 1988

[11] Xu C. and Lau F.C.M. “Load Balancing in Parallel
Computers: Theory and Practice”. Kluwer Academic
Press, 1997.

7. CONCLUSIONS

