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Abstract - To satisfy the user's requirements of open 
management and visual query in theoretical forward models a 
novel scheme and study for spaces that makes the Gelfand 
Shilov technique to generalize the Laplace Stieltjes transform 
a simple objective function a combination of two different 
transforms in the Distributional Generalized sense appropriate 
domains for harmonic analysis is proposed technology to be 
taken into consideration during the planning modeling 
operating Cauchy problems and performing  various 
operations due to wide spread applicability to solve the PDE 
involving distributional condition. In addition the primitive is 
used by giving convenient explanations for more general 
situations to achieve and enjoy a slightly faster decay in 
domain even in polynomial case by changing the scheme from 
one dimension to higher follows from the property of strong 
continuity at origin implies continuity at any point. However 
Cauchy problems with solutions which are not continuous at 
zero include important Differential problems that often arise 
in applications alongwith the well imposed 
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1. INTRODUCTION  
 

The systematic theory of distributional integral 
transform that objects develops well established valuable 
techniques of generalized functions also known as 
distributions due to wide spread applicability in real life 
situations have its origin in the work of Schwartz[1], 
Zemanian[2], Brychkov[3], Snedonn[4]  . The roots and 
mathematical approach of the methods are of great interest 
to gain appropriate flavor  in several branches of engineering  
stress back to the work of Heaviside[1890], Todor [5], 
Hamed[6], Cappiello[7] due to the concept of imposing 
conditions on the decay of the fundamental functions in 
María [8], Gabriella[9] at infinity with growth of the 
derivative to all the integrable functions used to formulate 
generalized solutions of partial differential equations as well 
as ordinary differential equations involving distributional 
boundary conditions for propogation of heat in cylindrical 
coordinates espetially in the quantum field theory as the 
order of the derivative increases. The linear part of such 
equations in Dusan[10],  Jaeyoung[11], Geetha[12] is 
connected to study the local regularity properties of 
analyzing functions as a motivation for formulating the 
generalized Laplace Stieltjes transform defind in Gulhane 

[13] a widest one result on the connection between the 
transforms not satisfying admissibility conditions with both 
local  and global behavior of the transform. Dmitrii in [14]  
designed a theoretical forward platform over integral 
representations of the generalized hypergeometric functions 
to establish new inequalities  by collecting a number of 
consequences of properties for completely monotonic 
Stieltjes class.  

We  studied a crucible role in mathematical analysis, 
mathematical physics and engineering of generalized 
functions in the form of a continuous collection of six distinct 
volumes by Gelfand[15], Irina[16] as an introduction to 
generalized functions and presents various applications to 
analysis, partial differential equations, stochastic process, 
representation theory where many continuous non-
continuous problems naturally lead to differential equations 
whose solution is a work by Paul Dirac[1920], Fisher[17]  for 
Dirac delta distributions used in modeling  quantum 
electronics  as  t equals to zero for nonzero functions and 
  for t equals to zero. The major protection devices in a 
generalized distribution theory a class of Gelfand Shilov 
spaces [18, 19,  20] their closed subspaces consisting of 
analytic signals which are almost exponentially localized in 
time and frequency variables control the decay of the 
transforms independently in each variables in Cordero[21] 
since the appropriate support of transform in positive 
domain which do not contain explicit regularity conditions. 
The spaces  have gained more attention in Feichtinger[22], 
Toft[23] connection with the modulation spaces localization 
operators the corresponding pseudo-differential calculus in 
Teofanov[24, 25] the projective descriptions of a general 
class of Gelfand Shilov spaces of Roumieu type are 
indispensable for achieving completed tensor product 
representations of different important classes of vector 
valued ultra-differentiable functions  of Roumieu. The main 
interest comes historically from Quantum Mechanics , where 
the exponential decay of eigen functions have intensively 
studied. Gelfand Shilov type spaces Robertson [26] in which 
the topology of bounded convergence is assigned to the dual 
function study with the Symbol-Global operator's type in the 
context of time-frequency analysis. 

2. CREATION OF TOPOLOGICAL SPACES 
In order to simplify the exposition we start by 

recalling some facts about one dimensional LS type spaces 
Gelfand Shilov involving both integral  differentiation 
multiplication by function exponential concept under one 
umbrella having the approach  to solve different types 
different order different degree ordinary differential 
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equations partial differential equations upto some desired 
order over some domain C the space  d

AA RLSLS ,,    
with constraints mainly on the decrease of the functions at 
infinity for 0 consists of all infinitely differentiable 
functions  xt,  for  tx 0,0  satisfying the 
inequality for each nonnegative integer ql,  
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as the constants  A and qC depend on the everywhere 

differentiable testing function  and Ra   . We get 

1kk  for 0k . 

The topology of the multinormed space  is generated by the 
countable multiform  

0,,,, qlqlka  

With this topology  aLS ,  is a countably multiform 
complete, normed, real (or complex)  strongest possible one 
with continuous induction map 

 aLS , to aLS , for every 

choice of .0  

Although some aspects were developed much earlier as if 
 qq

kqlka qBC,,,  
where kC  is a function depend on 

ql,  for the systematic study of  exponential constructed 

space ,LS which arise as a application of differentiable 
functions whose derivatives do or donot exist in the classical 
sense for the space  having constraints mainly on the growth 
of the involved partial derivatives as l  approaches to infinity 
for  0 as the origin. 

The extensively used contribution for the development of the 
necessary facts related to the generalized functions theory 
by Schwartz hence the construction of Laplace Stiltjes 
transform theory of generalized distributional transform is 
based on the test function space LS consisting of all 
infinitely differentiable function  xt,  defined for all 
positive values of xt,  having continuous derivative over 

some domain   1d
RC  

satisfying       
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Obviously the spaces aLS , , ,LS of all non negative 

numbers  ,  are subspaces of the above testing function 
space for  tx 0,0  

Let there be given 0, 11  , RBA 11,   be fixed,  xt,  
function defined for all positive values of xt,  having 

continuous derivative over some domain   1d
RC

 . Gelfand 
Shilov type space relative to Laplace transform 
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 where the constants 11,,
11

BAC ql  depend on the 
everywhere differential testing function   . From a 

topological point of view the spaces 1
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LS  and 1
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 are given 

by the union and intersection for 0, 11 BA of 11
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respectively with their topologies having special  paid 
attention on the inductive and projective limits: 
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Evidently the space 1

1



LS  of all non negative numbers  ,  
is contained in the intersection of the spaces aLS , , ,LS  
whereas space as a union of countably normed spaces were 
able to define sequential convergence in all metioned  spaces  
such that these spaces became sequentially complete. 

The Gelfand Shilov type distributional spaces  '1
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.Gelfand Shilov type spaces as a exponential sence as well as 
polynomial approach relative to Stieltjes transform 
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proper coordination of the variables and parameters in a 
unified manner by 
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where the constants 22 ,,
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The Gelfand Shilov type distributional spaces  '2
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Now we are ready to extend and construct the systematic 
theory of straightforward extension of two dimensional 
some LS type spaces of Laplace Stieltjes transform 
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transform as a very powerful mathematical tool applied in 
various areas of engineering and science with the increasing 
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The Gelfand Shilov type distributional spaces  '21
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 . The corresponding dual spaces introduced 
for the study of Cauchy problems in partial differential 
equations created as a model in technical subjects are the 
spaces of ultradistributions of Roumieu and Beurling 
respectively. Unless specified otherwise all the spaces 
introduced throughout will henceforth be considered 
equipped with their naturally Hausdorff locally convex 
topologies on these spaces are generated by the family of 
seminorms  qlka ,,, . 
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defined.  
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Depending on various choices of distributional spaces 
defined above defined in Gulhane [13] nondefined equipped 
with their naturally Hausdrof locally convex topologies 
generated by their respective corresponding total families of 
seminorms are as usal denoted by 
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where  2121 ,,,   are any numbers greater than zero 
lose the property of strongly continuity at 0,0  tx  
being strongly continuous at  tx 0,0  
equipped with their naturally Hausdrof locally convex 
topologies generated by their respective corresponding total 
families of seminorms as usal denoted by 2121
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 3. CONCLUSION 
 
 For the functional analystengineers from a topological point 
of view described spaces as a union of countability normed 
spaces able to define sequential convergence in all above 
mentioned spaces so become sequentially complete are 
interesting because of rich structure used to solve the 
equation of propogation of heat in cylindrical coordinates 
imposing the generalized boundary conditions. 
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