
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 02 | Feb 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2843

 REVIEW ON SEARCH ENGINE OPTIMIZATION

Sabresh.V#1, P.Usha*2

#1,2Department of Computer Science, Dr N.G.P Arts and Science College
Coimbatore-641048, Tamil Nadu, India

---***--
ABSTRACT— Search engines are answer machines. They
exist to urge , understand, and organize the internet's
content so on supply the foremost relevant results to the
questions searchers are asking. In order to means up in
search results, your content must first be visible to look
engines. This paper introduces SEO(Search Engine
Optimization), working of it. As we all know main point of
SEO is to rank websites using various techniques of SEO
like Keyword Research, Link Building, Social Media
Strategy so on enhance the Page Ranking of internet sites
.The next optimization technique used is crawling and it's
the invention process during which search engines send a
team of robots (known as crawlers or spiders) to seek out
new and updated content. The next optimization technique
used is indexing. Search engines process and store
information they find in an index, a huge database of all the
content they’ve discovered and deem okay to serve to
searchers.

Keywords—Search Engine optimization,Crawler,Page
Ranking,Indexing.

1. INTRODUCTION

Search Engine (SE) may be a tool that permits users to
locate information on the planet Wide Web. Search engines
use keywords entered by users to hunt out websites which
contain the knowledge sought. When someone performs an
enquiry, search engines scour their index for highly
relevant content then orders that content within the hopes
of solving the searcher's query. This ordering of search
results by relevance is understood as ranking. generally,
you'll assume that the upper an online site is ranked, the
more relevant the program believes that site is to the
query. Crawling and indexing may be a prerequisite to
exposure within the SERPs. If you've got already got an
online site, it would be an honest idea to start out out off by
seeing what percentage of your pages are within the index.
this may yield some great insights into whether Google is
crawling and finding all the pages you'd love it to, and none
that you simply don't.

2. VIEW ON PROGRAM OPTIMIZATION

A web program could also be a software that's designed to
seem for information on the earth Wide Web. The search
results are generally presented during a line of results
often mentioned as program results pages (SERPs). The
knowledge could even be a mix of web sites , images, and
other kinds of files. Some search engines also mine data
available in databases or open directories. Unlike web
directories, which are maintained only by human editors,
search engines also maintain real-time information by
running an algorithm on an online crawler.

Search engine optimization (SEO) is that the tactic of
affecting the visibility of a web site or a web page during a
search engine's "natural" or un-paid ("organic") search
results. generally, the earlier (or higher ranked on the
search results page), and more frequently a site appears
within the search results list, the more visitors it'll receive
from the search engine's users. SEO may target differing
types of search, including image search, local search, video
search, academic search, news search and industry-specific
vertical search engines.

3. SEARCH ENGINE ARCHITECTURE OVERVIEW

In this section, we'll provides a high level overview of how
the entire system works as pictured the above Figure .
Further sections will discuss the applications and data
structures not mentioned during this section. Most of
Google is implemented in C or C++ for efficiency and will
run in either Solaris or Linux. In Google, the web crawling
(downloading of web pages) is completed by several
distributed crawlers. there's a URL server that sends lists of
URLs to be fetched to the crawlers. the online pages that are
fetched are then sent to the storeserver. The storeserver
then compresses and stores the online pages into a
repository. Every website has an associated ID number
called a docID which is assigned whenever a replacement
URL is parsed out of an online page. The indexing function is
performed by the indexer and thus the sorter. The indexer
performs sort of functions. It read the repository,
uncompresses the documents, and parses them. Each
document is converted into a gaggle of word occurrences
called hits. The hits record the word, position in document,
an approximation of font size, and capitalization. The
indexer distributes these hits into a gaggle of "barrels",
creating a partially sorted forward index. The indexer
performs another important function. It parses out all the
links in every website and stores important information
about them in an anchors file. This file contains enough
information to figure out where each link points from and
to, and thus the text of the link. The URLresolver reads the
anchors file and converts relative URLs into absolute URLs

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 02 | Feb 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2844

and successively into docIDs. It puts the anchor text into
the forward index, related to the docID that the anchor
points to. It also generates a database of links which are
pairs of docIDs. The links database is employed to compute
PageRanks for all the documents.

The sorter takes the barrels, which are sorted by docID and
resorts them by wordID to urge the inverted index. this is
often exhausted place so as that tiny temporary space is
required for this operation. The sorter also produces a
listing of wordIDs and offsets into the inverted index. A
program called DumpLexicon takes this list in conjunction
with the lexicon produced by the indexer and generates a
replacement lexicon to be employed by the searcher. The
searcher is pass by an online server and uses the lexicon
built by DumpLexicon in conjunction with the inverted
index and thus the PageRanks to answer the queries.

4. CRAWLING THE WEB

Running a web crawler is a challenging task. Crawling is
that the foremost delicate application since it involves
interacting with many thousands of web servers and
various name servers which are all beyond the control of
the system.

In order to scale to many many sites, Google features a fast
distributed crawling system. A single URLserver serves
lists of URLs to variety of crawlers. Both the URLserver and
therefore the crawlers are implemented in Python. Each
crawler keeps roughly 300 connections open directly. This
is necessary to retrieve sites at a quick enough pace. At
peak speeds, the system can crawl over 100 sites per
second using four crawlers. This amounts to roughly 600K
per second of knowledge. A major performance stress is
DNS lookup. Each crawler maintains a its own DNS cache
so it doesn't got to do a DNS lookup before crawling each
document. Each of the hundreds of connections can be
during a number of various states: looking up DNS,
connecting to host, sending request, and receiving
response. These factors make the crawler a posh
component of the system. It uses asynchronous IO to
manage events, and variety of queues to maneuver page
fetches from state to state. It seems that running a crawler
which connects to quite half 1,000,000 servers, and
generates tens of many log entries generates a good
amount of email and phone calls. Because of the vast
number of individuals approaching line, there are always
those that don't know what a crawler is, because this is
often the primary one they need seen. Almost daily, we
receive an email something like, "Wow, you verified many
pages from my web site. How did you like it?" There are
also some folks that do not realize the robots exclusion
protocol, and think their page should be shielded from
indexing by a handout like, "This page is copyrighted and
will not be indexed", which needless to mention is difficult
for web crawlers to know . Also, due to the large amount of
knowledge involved, unexpected things will happen. For
example, our system tried to crawl a web game. This
resulted in many garbage messages within the middle of

their game! It seems this was a simple problem to repair .
But this problem had not come up until we had downloaded
tens of many pages. Because of the immense variation in
sites and servers, it's virtually impossible to see a crawler
without running it on large a neighborhood of the online.
Invariably, there are many obscure problems which can
only occur on one page out of the entire web and cause the
crawler to crash, or worse, cause unpredictable or incorrect
behavior. Systems which access large parts of the web got to
be designed to be very robust and punctiliously tested. Since
large complex systems like crawlers will invariably cause
problems, there must be significant resources dedicated to
reading the e-mail and solving these problems as they're
available up.

5. INDEXING THE WEB

Parsing -- Any parser which is meant to run on the whole
Web must handle an enormous array of possible errors.
These range from typos in HTML tags to kilobytes of zeros
within the middle of a tag, non-ASCII characters, HTML tags
nested hundreds deep, and an excellent sort of other errors
that challenge anyone’s imagination to return up with
equally creative ones. For maximum speed, rather than
using YACC to get a CFG parser, we use flex to get a lexical
analyzer which we outfit with its own stack. Developing this
parser which runs at an inexpensive speed and is extremely
robust involved a good amount of labor . Indexing
Documents into Barrels -- After each document is parsed,
it's encoded into sort of barrels. Every word is converted
into a wordID by using an in-memory hash table. Once the
words are converted into wordID’s, their occurrences
within this document are translated into hit lists and are
written into the forward barrels. The main difficulty with
parallelization of the indexing phase is that the lexicon must
be shared. Instead of sharing the lexicon, we took the
approach of writing a log of all the extra words that weren't
during a base lexicon, which we fixed at 14 million words.
That way multiple indexers can run in parallel then the tiny
log file of additional words are often processed by one final
indexer. Sorting -- so as to get the inverted index, the sorter
takes each of the forward barrels and sorts it by wordID to
supply an inverted barrel for title. This process happens
only one barrel at a time, thus requiring little temporary
storage. Also, we parallelize the sorting phase to use as
many machines as we've just by running multiple sorters,
which may process different buckets at an equivalent time.
Since the barrels don’t fit into main memory, the sorter
further subdivides them into baskets which do fit into
memory supported wordID and docID. Then the sorter,
loads each basket into memory, sorts it and writes its
contents into the short inverted barrel and therefore the full
inverted barrel.

6. THE RANKING SYSTEM

Google maintains far more information about web
documents than typical search engines. Every hitlist
includes position, font, and capitalization information.
Additionally, we think about hits from anchor text and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 02 | Feb 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2845

therefore the PageRank of the document. Combining all of
this information into a rank is difficult. We designed our
ranking function in order that no particular factor can have
an excessive amount of influence. First, consider the only
case -- one word query. In order to rank a document with
one word query, Google looks at that document’s list for
that word. Google considers each hit to be one of several
differing kinds (title, anchor, URL, plain text large font,
plain text small font, ...), each of which has its own type-
weight. The type-weights structure a vector indexed by
type. Google counts the amount of hits of every type within
the list . Then every count is converted into a count-weight.
Count-weights increase linearly with counts initially but
quickly taper off in order that quite a particular count
won't help. We take the scalar product of the vector of
count-weights with the vector of type-weights to compute
an IR score for the document. Finally, the IR score is
combined with PageRank to offer a final rank to the
document.

For a multi-word search, things is more complicated. Now
multiple hit lists must be scanned through directly in order
that hits occurring approximate during a document are
weighted above hits occurring far apart. The hits from the
multiple hit lists are matched up in order that nearby hits
are matched together. For every matched set of hits, a
proximity is computed. The proximity is predicated on how
far apart the hits are within the document (or anchor) but
is assessed into 10 different value "bins" ranging from a
phrase match to "not even close". Counts are computed not
just for every sort of hit except for every type and
proximity. Every type and proximity pair has a type-prox-
weight. The counts are converted into count-weights and
that we take the scalar product of the count-weights and
therefore the type-prox-weights to compute an IR score. All
of those numbers and matrices can all be displayed with
the search results employing a special debug mode. These
displays are very helpful in developing the ranking system.

7. CONCLUSION

Search Engine is basically useful gizmo in present era of
web. There are many of search engines available in market,
but hottest program is Google. So for getting to pmost
results in web, we have to use search engine optimization
technique. Both on page and off page program optimization
techniques are important for better search result.

8. REFERENCES

1. Ayush Jain,”The Role and Importance of Search Engine
and Search Engine Optimization”,june 2013,International
journal of emerging trends & technology in computer
science(IJETTCS)

2. Sergey Brin and Lawrence Page,”The Anatomy of a
Large-Scale Hypertextual Web Search Engine”,february
2018,International Journal of Engineering Science &
Research Technology(IJESRT).

3. Vinit Kumar Gunjan,pooja,monika kumar,”search engine
optimization with google”,jan 2012,International Journal of
Computer Science Issues,(IJCSI).

4. ranveet singh,ajay bansal,”impact of search engine
optimization on marketing tool”,march 2018,jindal journal
of business rearch.

5. Shraddha Londhe , Dr. Hemant Deshmukh,”review paper
on serach engine optimization,APRIL 2017,International
Journal of Engineering Science and Computing,(IJESC).

