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Abstract: In this paper, we have studied some properties of ideals and filters of a meet-semilattice. We have discussed 0-
distributive meet-semilattice and given several characterizations of 0-distributive meet-semilattices directed below. Finally, we
have included a generalization of prime separation theorem in terms of dual annihilators.
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1. Introduction:

Varlet [7] have given the definition of a 0-sistributive lattice. Then Balasubramani et al [1] have established some
results on this topic. A lattice L with 0 is called a 0-distributive lattice if for all a, b, c € Lwith a Ab =0 =aAc imply
aA(bVvc)=0.Any distributive lattice with 0 is 0 - distributive. In this paper we will study the 0-distributive meet-
semilattices.

An ordered set (S, <) is said to be a meet - semilattice if inf{a, b} exists for all a, b€ S.we write a A b in place of inf{a, b}.
A meet- semilattice s is called distributive if a = b; A b,(a, by, b, € S)

Implies the existence of a;, a, € S; a; = b, ,a, = b, witha = a; A a,.

For literature on meet- semilattice, we refer the reader to consult Talukder et al [5,6], Noor et 1 [3] and Gratzer [2].

A meet-semilattice S with 0 is said to be 0-distributive if for any a,b,c € S suchthataAb = 0 = a AcimpliesthataAd =0
forsome d > b, c.

Both distributive and modular meet-semilattices share a common property “For all a, b € S there exists ¢ € S such that ¢ >
a, b".this property is known as the directed below property. Hence a meet-semilattice with this property is known as a
directed below semilattice.

A subset I of a meet-semilattice S is called an upsetif x € L and y € S with x > y implies y € L.
Let S be a meet- semilattice. A non-empty subset F of S is called a filter if
(1) Fis an upset, and
(2) a, b € Fimplies there exists d = a,b such that d € F.
A filter F is called proper filter of a meet- semilattice Sif F # S.
A proper filter (upset) F in S is called a prime filter (upset) ifa Ab € F
Implies either a € F or b € F.For a € S, the filter

F = {x € S|x = a} is called the principle filter generated by [a). A prime upset (filter) is called a maximal prime upset
(filter) if it does not contain any other prime upset (filter).

A subset I of S is called an ideal if

(1) a,b €limpliesanb € I(tt)a €S, t € witha = timplies
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a€l
An ideal I of a meet-semilattice S is called prime ideal if I # S and s — I is a prime filter.

A minimal ideal I of S is a proper ideal which is not contained in any other proper ideal. That is, if there is a proper ideal ] such
that/ € I theni =].

Let S be a meet-semilattice with 0. For § € A.

Set A% ={x € S|x Aa =0V a € A}.Then A*% is called the dual annihilator of A. This is always an upset but not necessarily a
filter.

For a € S,we denote
{a}*%={x € S|x Aa = 0}. moreover A** = , W{{a}*}.
2. Some properties if ideals and filters of a meet-semilattice
Lemma.2.1
Let S be a meet semilattice with 0. Then every prime upset contains a maximal prime upset.
Proof:

Let F be a prime upset of S and let A denote the set of all prime upset Q contained in F. Then A is non empty as F € A. Let
Cbe achainin A and

Let M =U {X| X € C}. We claim that M is a prime upset. M is non empty as 0 € M.Leta € M and a > b.Thena €
X forallX € C.Henceb € X for all X € C as X is an upset.

Thus b € M. Againletx Ay € M for some x,y € S.Thenx Ay € X for all X € C.Since X is prime upset ,so either x € X or y €
X this implies either x € M or y € M. Hence M is a prime upset . Therefore, we can apply to A the dual form of Zorn’s lemma
to conclude the existence of a maximal member of A.m

Lemma.2.2
Let S be a directed below meet-semilattice. Then the union of any two filters of S is also a filter.
Proof:

Let F, Q be two filters of a directed below meet-semilattice S.Leta € FU Q and b € Swith b = a.Thena € F and a € Q.
Since both F and Q are filters.Sob € F and b € Q.Hence b € F U Q. Againleta,b € FUQ.Soa,b € F and a,b € Q. Since F and
Q are both filters, then there exists f € F and q € Q such that f,q = a,b.LetC = f vV q. Thenc € F U Q,where C >
a,b.hence FUQ is a filter.m

Lemma.2.3
Let I be a nonempty proper subset of a meet-semilattice S. Then I is an ideal if and only if S-1 is a prime upset.
Proof:
Let I be an ideal of a meet-semilattice S. Now let x € S — I and

x=ythenx &l,soy &laslisanideal. Hencey € S — I,thus S — I is an upset.Since | is an ideal, so S — [is an upset. Since
lisanideal,so S — I # S,therefore S — I is a proper upset. Leta,b € SwithaAb € S —I.thena A b & I. Therefore either
a¢&lorb¢&laslisanideal. Hence eithera € S—1or b € S — I. Therefore S — I is a prime upset.

Conversely let S-1 is a prime upsetand x,y € I,thenx,y € S — I.
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Thusx Ay &€ S — 1 as S-lis a prime upset. Hence x Ay € [.Again,letx € [and y > x.thenx ¢ S — I, thereforey & S —
IasS —1isanupset.Hencey € I and thus I is an ideal. m

Corollary.2.4
Let I be a nonempty subset of a meet-semilattice S. Then I is a minimal ideal if and only if S-I is a maximal prime upset.
Theorem.2.5
Every proper ideal of a meet-semilattice S with 0 is contained in a minimal ideal.
Proof:

Let I be a proper ideal in S with 0. Let P be the set of all proper ideals containing L. then P is nonempty as I € P.Let C be a
chainin Pand let M =n {X|X € C}. We claim that M is an ideal with M € [. Letx € M and y = x. Then x € X for some X € C.
HenceY € X as Xis an ideal. Therefore y € M.Again, Letx,y € M,thenx € Xand y €Y for some x,y € C. Since C is a chain,
soeitherY € X or X C Y. SupposeY € X,sox,y € Y,thenx Ay € Y asYisanideal. Hence x A y € M, moreover I contain M, so
M is minimal element of C. then by Zorn’s lemma, P maximal element say Q withQ S/ .m

Now we give a characterization of minimal ideals of a meet-semilattice.
Theorem.2.6

Let S be a meet-semilattice with 0. A proper ideal M in S is minimal if and only if for any element a € S — M . there exists
an element b € M suchthataAb = 0.

Proof:

Suppose M is minimaland a € M,letaAb # 0 for all b € M. Consider M; = {y € S|y = a A b for some b € M}. Clearly M,
is an ideal and is proper as 0 € M, for every b € M.Wehaveb > aAbandsob € M;.Thus M; € M.Alsoa € M but a € M;,
soM; c M,

Which contradicts the minimality of M. Hence there must exists some b € M such thataAb = 0.

Conversely, if the proper ideal M is not minimal, then as 0 € §, there exists a minimal ideal N such that N ¢ M, for any
element a € N — M. There exists an element b € M such that a Ab = 0. Hence a,b € N imply 0 = a A b € N which is
contradiction. Thus, M must be a minimal ideal.m

3. SOME CHARACTERIZATIONS OF 0 - DISTRIBUTIVE MEET SEMILATTICE
In this section, we prove our main results of this paper.
Theorem 3.1
Every 0 - distributive meet semilattice is directed below.
Proof:

Let S be a 0 - distributive meet semilattice and b, c € S. Then aAb= 0 = 0 A ¢ which implies there exists de S withd > b, ¢
such thata A d = 0. Thus d is upper bound of b, c. The converse of the above theorem is not true by s, of figure 1.1. m

Theorem 3.2

Leta, ay, a,, ..., a, be elements of a 0 — distributive meet semilattice S suchthatana;, =a Aa, =--=a A a, =0.Thena
Ab =0forsomeb > a,,a,,..,a,.

Proof:

We want to prove this theorem using mathematical induction method.
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LetaAa; = aAa, = 0.Since S is 0 - distributive. So, a A b; = 0 for some b; = a4, a,. That is, the statement is true for

a,and a,. Let, aAa,=aAa, =--=aAag_; = 0.Then for the 0 - distributivity of S, a A b, = 0 for some b, > b,,a; as S
is a 0 - distributive. This implies thata A b = 0 for some b > a; a,, ..., a;. Hence by the method of mathematical induction, the
theorem is true forb = a, a,, ...,a,.m

Following results gives some nice characterization of 0 - distributive meet semilattices.
Theorem 3.3

For a directed below meet semilattice S with 0, the following conditions are equivalent: i) Sis a 0 - distributive. ii) {a}*® is a
filter for all a € S. iii) A*¢ is a filter for all finite subsets A of S. iv) Every minimal idea is prime.

Proof:
i)eii):

Let x € {a}*® and x >y. Since x € {a}'%, sowe geta Ax=0impliesa Ay =0asx >y.Hence y € {a}*%,and so {a}*%is an
upset. Again let x,y € {a}*%, Thus aA x = a Ay = 0. By 0 - distributivity of S, there exists z with z > x,y such thataA z =
0. Therefore z € {a}*%, and so {a}*¢ is a filter.

Conversely, letx,y,z € S withxAy = x Az = 0. Then y, z € {x}*¢. Since {x}*¢ is a filter, so there exists t > y, z such that t €
{x}*¢, and so tA x = 0.This implies S is 0 - distributive.

ii) &iii):
It is trivial by theorem 2.2 as A*¢ = ,4{a}*<.
i)=iv):

Let I be a minimal ideal of S. Then by corollary 2.4, S — I is a maximal prime upset. Now suppose x,y € S — I. Then x, y¢ I, and
so by the minimality of I, I A (x] = S,1 A (y] = S. ThisimpliesaAx =0 =bAyforsomea,b€l.ThusaAbAx =aAbAy =
0. Since S is 0 - distributive, there exists d> x,y suchthataAb A d = 0.

Now,aAb €l impliesaAb € S—1I,and S — I is prime implies d€ S — I. Therefore S — I is a prime filter and so [ is a prime
ideal.
iv)=i):

Let S be not 0 - distributive. Then there are a,b,c € SsuchthataAb=0=aAcand aAd # 0 for all d = b, c. Now, set

I ={x€eS|x=aAy,y=>b,c}Clearlylis an ideal and it proper as 0¢ I.By theorem2.5 I € J for some minimal ideal ]. Now we
claim that either be J or ¢ € J.If b,c€ J,then b,c € S —J.As]is a prime ideal, then we have S—] is a prime filter and b, ¢

€ S — J. Since S—] is afilter, thereis c € S — ] such that a < b,c. Hence a A e € S — ] gives a contradiction. Hence b€ J or c € J.
This implies, eithera A b € ] or a A ¢ € J. Thus 0€ ] which contradict the minimality of ]. Thereforea A d = 0for some d <

b, c and hence S is a 0-distributive m

Note that in case of a 0-distributive lattice L, for any AS L, A*¢ is a filter. But this is not true in a directed below meet-semi
lattice S with 0, as the union of finite number of filters in S is not necessarily a filter.

Corollary 3.4
In a 0-distributive meet-semi lattice, every proper ideal is contained in a prime ideal.

This immediately follows by theorem 2.5 and theorem 3.3.
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Theorem 3.5
In a 0-distributive meet-semi lattice S if {0}# A is the union of all filters of S not equal to {0}. Then A*¢ = {x € S|{x}e = {0}}.

Proof:
Let x€ A4, Since xA a = 0 for all a € A.Since A# {0}, so {x}*% # {0}. Thusx € R.H.S. Thatis A*¢ € R.H.S.

Conversely, let x€ R. H.S. So {x}*¢ # {1}.Also S is a 0-distributive. Then {x}% is a filter of S. Hence AC {x}*%and so
At C {x}*4. This implies x€ A*%. Thus R.H.S. € A which completes the proof.m

Finally, we give a necessary and sufficient condition for a meet-semi lattice S with 0, 0 be a 0-distributive which is a
generalization of power and et al. [4; Theorem 7].

Theorem 3.6

Let S be a meet-semi lattice with 0. Then S is 0-distributive if and only if for any ideal I disjoint with {x}*% (x € S), there exists
a prime ideal containing I and disjoint with {x}*¢.

Proof:

Suppose S is a 0-distributive meet-semi lattice. Let P be the set of has I€ P. Let C be a chainin P and let M = N{X|x € C}. First
we claim that M is an ideal with MC I and M U {x}*® — @. Letx € M and x < y. Then x€ X for some X € C.Hence y€ X as Xis
an ideal. Thus y€ M. Again, letx,y€ M.Thenx € X and y € Y for some X,Y € C. Since C is a chain, so either XS Y or Y C X.
Suppose XS Y,so x,y € Y. Thenx Ay € Y as Yisan ideal. Hence x A y € M. Thus M is an ideal. Moreover, | contain M and

MU {x}*¢ = @.Then by Zorn’s lemma, there exists a minimal element Qin P. Hence by Zorn's lemma as in theorem 2.5, there
exists a minimal ideal I containing P and disjoint from {x}*¢. We claim that x€ P. If not, then PA (x] is an ideal containing P. By
the minimality of P, (PA (x]) U {x}*¢ = @. Lett € (PA (x]) U {x}*%. Then t< p A x for some p€ P and t A x = 0. This implies
thatp A x = 0 and so p € {x}*¢, which is a contradiction. Now suppose

y¢ P.Then (P A [y]) n {x}*% # @ bythe minimality of P.LetSE (P A (y]) U {x}*¢. Then S< p, Ay for some p, € P and S A

x = 0. This implies (p; Ax) Ay = 0.Since p; A x € P, so by theorem 2.6, P is a minimal ideal of S. Therefore, by theorem 3.3, P
is a prime ideal.

Conversely, let x, y, z€ S such that x Ay = 0,x Az = 0. Suppose for all y, z< d we have x Ad # 0. Then d¢ {x}*%. Set I =
{a € Sla < x Aa,foralla <y,z}. First we claim that I is a proper ideal. Clearly, I is nonempty as x € [.Letp € [ and p < q.
Thenp <xAaandsoq <xAa.Thus pAq < xAa. Hence p Aq € I. Therefore I is an ideal and I is a proper ideal as a€& I.
Again x € land a € I for all a < y,z. Then {x}*% U I = @ and hence there is a prime ideal ] such that JS I and {x}** U] = 0.
Thus x € Jand a € ] for all a < y,z. Now we claim that eitherye Jorz € J.If y,z & J theny,z € S —J. As ] is a prime ideal,
then § — J is a prime filter and y, z€ S — J. Since S — ] is a filter, there is f€ S — J such that f< y, z which is a contradiction.
Hence either y € ] or z € J. This implies either x Ay € J or x A z € J. Thus 0€ J which is a contradicts the primeness of ]. Hence
x Ad = 0. Thus S is a 0-distributive.m
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