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Abstract: In this article we discuss about the semi prime 
ideals in ordered join hyperlattices. 

Introduction: In this paper, we consider order relation ≤ 
as x ≤ y if and only if y = x ˄ y for all x, y Є L, and we 
introduce semi prime ideals in ordered join 
hyperlattices. Here, we give some results about them. 

I. Preliminaries 

Definition 1.1: 

Let H be a non-empty set. A Hyperoperation on H is a 
map ◦ from H× H to P*(H), the family of non-empty 
subsets of H. The Couple (H, ◦) is called a hypergroupoid . 
For any two non-empty subsets A and B of H and x Є H, 
we define A ◦ B =          a ◦ b; 

A ◦ x = A ◦ {x}     and     x ◦ B = {x} ◦ B 

A Hypergroupoid (H, ◦) is called a Semihypergroup if for 
all a, b, c of H we have (a ◦ b) ◦ c = a ◦ (b ◦ c). Moreover, if 
for any element a   H equalities  

A ◦ H = H ◦ a = H holds, then (H, ◦) is called a Hypergroup. 

Definition 1.2: 

Let L be a non-empty set, ∨: L × L → p* (L) be a 
hyperoperation and ˄ : L × L →L be an operation. Then 
(L, ˄, ∨) is a join Hyperlattices if for all x, y, z Є L. The 
following conditions are satisfied: 

1) x Є x ∨ x and x = x ˄ x 
2) x ˄ (y ˄ z) = (x ˄ y) ˄ z and x ∨ (y ∨ 

z) = (x ∨ y) ∨ z 
3) x ˄ y = y ˄ x and x ∨ y = y ∨ x 
4) x Є x ∨ (x ˄ y)   x ˄ (x ∨ y) 

Definition 1.3: 

An Ideal [1] P of a join hyperlattices L is Prime [2] if for 
all x, y Є L and x ˄ y Є P, we have x Є P and y Є P. 

Proposition 1.4: 

Let L be a join hyperlattices. A subset P of a hyperlattice 
L is prime if an only if L\P is a subhyperlattice of L. 

Definition 1.5: 

Let (L, ˄, ∨, ≤) be an ordered join hyperlattices and I C L 
be an ideal and F be a filter of L. We call I is a semiprime 
ideal if for every x, y, z Є L, (x ˄ y) Є I or (x ˄ z) Є I implies 

that x ˄ (y ∨ z) C I. Also, we call F is a semiprime filter if x 
∨ y C F or x ∨ z C F implies that x ∨ (y ˄ z) C F. 

II. Properties of semi prime ideals in ordered join 
hyperlattices [4] 

Every Prime ideal I is semi prime [3]. Since if (x ˄ y) Є I 
or (x ˄ z) Є I, we have x Є I and y Є I or x Є I and z Є I. 

If x ЄI, by x ˄ (y ∨ z) ≤ x we have, x ˄ (y ∨ z) C I 

Otherwise, we have y, z Є I. 

So, y ∨ z C I and x ˄ (y ∨ z) C I. 

Proposition 2.1: 

Let (L, ˄, ∨, ≤) be an ordered join hyperlattices and I be a 
semiprime ideal of L. Also, for any A, B C L, A ≤ B C I 
implies that A C I. Then,    = {J Є Id(L); J C I} is a 
semiprime ideal of L. If L is a finite hyperlattice,    =   {J; 
J C I} is a semiprime ideal of L. 

Proof: 

Let  ,    C I, then    ∨    C I ∨ I. 

Since, I is an ideal of L, we have I ∨ I C I. 

Therefore,    ∨    C I. 

Let    ˄    C   ,    ˄    C    for any   ,   ,    Є Id (L). 

Then, let x’      ˄ (     ). 

x’ = x ˄ y for x Є   , y Є      . 

Therefore, y = y’ ∨ y’’ for some y’ Є    or y’’ Є   . 

We have x ˄ y’ Є         I or x ˄ y’’ Є         I. 

Since I is semiprime, we have 

x ˄ (y’ ∨ y’’)   I and    ˄ (     )   I. 

If L is finite, we prove that    is a semi prime ideal. 

Let x, y Є   . 

Thus, x Є      I or y Є      I. 

Therefore, x ∨ y           I. 

Let x ≤ y Є      I. 
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Since, I is an ideal, we have 

x Є I   or   x Є   . 

Since L I finite,    is a semiprime ideal of L. 

Theorem 2.2: 

Let L be a s-good (x ∨ 0 = x) bounded ordered join 
hyperlattices and I be an ideal and F be a filter of L such 
that I F =   and for any A   F. If F is a semiprime filter, 
there exists a semiprime ideal J such that I   J and J F = 
 . 

Proof: 

Let F be a semiprime filter and   be a congruence on L 
which is defined as a   b if and only if  

F:a = F:b where F:a = {x Є L; a ∨ x   F}. 

Then,   is an equivalence relation. 

Now, we show that   is compatible with v and V. 

Let a   b, since F is a semiprime filter, we have  

 F:a ˄ c = (F:a)   (F:c) 

             = (F:b)   (F:c) 

             = F:b ˄ c. 

Thus, a ˄ c   b ˄ c. 

Let y ∈ F:a ∨ c.  

Thus, y ∨ a ∨ c ⊆ F and therefore,  

y ∨ c ⊆ F:a = F:b.  

y ∨ c ∨ b ⊆ F and y ∈ F:c ∨ b. 

Therefore, θ is compatible with ∨. 

Clearly, θ is a strongly regular relation and therefore L/θ 
is a lattice.  

Now, we claim that L/θ is a distributive lattice.  

Let s θ x ˄ (y ∨ z) and  

u ∈ F:s = F:x ˄ (y ∨ z). 

A = u ∨ (x ˄ (y ∨ z)) ⊆ F.  

Since L is bounded, we have A ≤ u ∨ (1 ˄ (y ∨ 1)) ≤ u ∨ (y 
∨ 1).  

So, we have u ∨ y ⊆ F or  

u ∨ x ⊆ F.  

By semi prime property of F, we have 

u ∨ (x ˄ y) ⊆ F and since  

u ∨ (x ˄ y) ≤ u ∨ (x ˄ y) ∨ (x ˄ z).  

Therefore, u ∈ F:(x ˄ y) ∨ (x ˄ z) and  

L/θ is a distributive lattice.  

Also, in L/θ, we have Iθ ∩ Fθ = φ.  

If there exists y ∈ Hθ ∩ Fθ, we have I θ F.  

Thus, F:I = F:F and since 0 ∨ F = 0 ⊆ F, we have 0 ∈ F:I. 0 
∨ I = 0 ⊆ F which is a contradiction to I ∩ F = φ. 

So Iθ ∩ Fθ = φ. Since I ∩ F = φ, there exists Pθ ∈ L/θ such 
that Iθ ⊆ Pθ where Pθ is a prime ideal.  

Let us consider a canonical map h: L → L/θ by h(a) = 
θ(a).  

Therefore, we have I ⊆ h −1 (Pθ) = P,  

P ∩ F = φ and  

P is a prime ideal of L. 

Theorem 2.3: 

Let (L, ˄, ∨, ≤) be an ordered join hyperlattices. L is a 
distributive hyperlattice if and only if for every ideal I 
and filter F of L such that I ∩ F = φ, there exist ideal J and 
filter G of L such that I ⊆ J, F ⊆ G, J ∩ G = φ, J or G is semi 
prime and for every x ∈ L, we have x ∈ J ∪ G 

Proof: 

Let L be a distributive hyperlattice. We know that, if (L, ˄, 
∨) is a distributive hyperlattice if I and F are ideal and 
filter, respectively then I ∩ F = φ, then there exist ideal J 
and filter G of L such that  

I ⊆ J, F ⊆ G, then J ∩ G = φ.  

Now, we show that L is distributive.  

Let x, y, z ∈ L and I be the ideal which is generated by  

(x ˄ y) ∨ (x ˄ z) and F be a filter which is generated by x 
˄ (y ∨ z).  

Let, x ˄ (y ∨ z)   (x ˄ y) ∨ (x ˄ z).  

Therefore I ∩ F = φ.  

Then, there exist ideal J and filter G such that I ⊆ J and F 
⊆ G, J ∩ G = φ.  

If J is semi prime ideal, since  
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x ˄ y ∈ J or x ˄ z ∈ J, we have x ˄ (y ∨ z) ⊆ J.  

Since x ˄ (y ∨ z) ⊆ G, we have J ∩ G   φ which is a 
contradiction.  

If G is semi prime, we have x ∈ G or y ∨ z ⊆ G.  

If y ∈ G, since x ∈ G, we have x ˄ y ∈ G, and if z ∈ G, we 
have x ˄ z ∈ G,  

which is a contradiction to J ∩ G = φ.  

So neither y nor z are not in G.  

If both y, z ∈ J, y ∨ z ⊆ J.  

This is contradiction with J ∩ G = φ.  

So both y, z ∈ J is impossible.  

Let y not belongs to J and z ∈ J.  

We have x ˄ z ∈ J. 

Since, x ˄ y ≤ (x ˄ y) ∨ (x ˄ z) ∈ J,  

We have x ˄ y ∈ J.  

But x ˄ y ∈ G, and this is contradiction.  

Then, we have x ˄ (y ∨ z) ≤ (x ˄ y) ∨ (x ˄ z).  

Let (x ˄ y) ∨ (x ˄ z)   x ˄ (y ∨ z) and I is an ideal which is 
generated by x ˄ (y ∨ z), F is a filter which is generated 
by (x ˄ y) ∨ (x ˄ z).  

Similarly, we arrive at the contradiction and the proof is 
completed. 

 III. Conclusion 

In this paper we have discussed about the semi prime 
ideals and their properties in ordered join hyperlattices. 
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