
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 494

Driver Drowsiness Detection with Face Recognition System

Rushikesh Rajendra Kamble1

1Student, Department of Computer Engineering in Degree, Sinhgad Institute of Technology and Science, Pune,
Maharashtra, India.

---***--

Abstract – In modern days, we see how car accidents are
increasing due to many reasons like drowsy driving or
drunk driving or speeding and many more reasons. Hence
we develop a modern solution, were my system will alert the
driver if driver is sleeping.

My system recognizes the face of driver, which will help us to
maintain a report. The system will display a bar chart for
how much time a driver has drove a car and line chart for at
which time driver had drowsiness.

Report will help the drivers, how much time he/she has to
drive a car and will also prevent accidents.

System is using EAR technique to detect if the driver is
sleeping or not.

Key Words: Driver, Drowsiness, Face, Recognition,
System, Python

1. INTRODUCTION

In modern days increase in car accidents is a major issue.
The reason behind accidents is 40% - 50% drivers feels
drowsiness or might be drunk. In that case system will
help us to prevent the car accidents. Second major issue is
for those parents who don’t know how much their
son/daughter has driven the car. Report will show on
which date and for how much time the car is driven by
their child.

The system detects whether the driver is sleeping or not.
To detect the drowsiness, system plots 6 points on eyes
and find the EAR (Eyes Aspect Ratio). If the EAR values is
below the trash value then it will count the frames. After
15 frames it will play the alert to wake up the driver.

I have used python 3.8 to write this code. System uses
OpenCV to work on images. I have used stranded
face_recognition library to recognize the faces. With the
help of facial landmarks, system detects where the eyes
are. Matplotlib is used to plot the graphs.

In the report part, I have design two graphs. First one is
bar chart and second one is line chart. In bar chart, system
displays the driving hours of various drivers. In line chart,
system displays at which time driver feels drowsiness.
Reports are sorted in date manner.

1.1 Literature Survey

Universidad de las Fuerzas Armadas - ESPE, This
College has done work on Real Time Driver Drowsiness
Detection Based on Driver’s Face Image Behavior Using a
System of Human Computer Interaction Implemented in a

Smartphone in year January 2018.This project was done
by Eddie E. Galarza, Fabricio D. Egas, Franklin M. Silva,
Paola M. Velasco, Eddie D. Galarza1. They develop the
mobile application to detect the drowsiness. The main
drawback of that system is if user did not set phone then
reports are not generated. System cannot show how much
time one driver has driven a car.

But all operations like detecting faces and checking
drowsiness is working well. They did not implement the
face recognition part.

2. DRIVER DROWSINESS DETECTION WITH FACE
RECOGNITION SYSTEM

Drowsiness detection is a safety technology that can
prevent accidents that are caused by drivers who fell
asleep while driving. The objective of this intermediate
Python project is to build a drowsiness detection system
that will detect that a person’s eyes are closed for a few
seconds. This system will alert the driver when
drowsiness is detected.

2.1 Project Description

In this Python project, we will be using OpenCV for
gathering the images from webcam and feed them into a
Deep Learning model which will classify whether the
person’s eyes are ‘Open’ or ‘Closed’. The approach, we will
be using for this Python project is as follows

Step 1 – Take image as input from a camera.
Step 2 – Detect the face in the image and recognize the
face.
Step 3 – Detect the eyes from landmarks.
Step 4 – Find EAR of both eyes.
Step 5 – Check EAR to check whether the person is drowsy

● Prerequisites
The requirement for this Python project is a webcam
through which we will capture images. You need to have
Python (3.6 version recommended) installed on your
system, then using pip, you can install the necessary
packages.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 495

OpenCV – pip install OpenCV-python (face and eye
detection).
MatplotLib - pip install matplotlib (To plot a graph)
pyttsx3 - pip install pyttsx3 (for text to speach)
face_recognition - pip install face-recognition (To
recognize a face)

3. TECHNICAL DOCUMENTATION

3.1 EAR

As mentioned, to a certain extent, the state of eyes
indicates whether the driver is drowsy or not. Because
there are significant differences about time of eyes closed
between awake and drowsy. In a method of ellipse fitting
was proposed to describe the shape of pupil. As shown in
Fig 1, the method segments the pupil with traditional
image process firstly. Then, an ellipse is fitted with the
white pixels, which represent the shape of eyes. Lastly, the
ratio of the major and minor axes of the ellipse was used
to evaluate the eyes state.

We noticed its performance might be limited by the
following facts:

(1) The pixel values are sensitive. Changeable
environment is easy to make image segmentation to be
worse.

(2) In practical application, the pixel values between
pupils and glasses are very close, which lead to false
ellipse fitting. In this paper, we design a new more stable
parameter based on Dlib toolkit to evaluate the state of
driver’s eyes. It is more stable and precise than ellipse
fitting method thanks to avoiding the traditional image
process.

Fig. 1. Eyes landmarks. Upper: the distribution of eyes

landmarks has significant differences. Bottom: the values
of EAR at open and closed state.

3.2. OpenCV:

Deep Learning is a fast growing domain of Machine
Learning and if you’re working in the field of computer
vision/image processing already (or getting up to speed),
it’s a crucial area to explore.

With OpenCV 3.3, we can utilize pre-trained networks
with popular deep learning frameworks. The fact that they
are pre-trained implies that we don’t need to spend many
hours training the network — rather we can complete a
forward pass and utilize the output to make a decision
within our application.

OpenCV does not (and does not intend to be) to be a tool
for training networks — there are already great
frameworks available for that purpose. Since a network
(such as a CNN) can be used as a classifier, it makes logical
sense that OpenCV has a Deep Learning module that we
can leverage easily within the OpenCV ecosystem.

Popular network architectures compatible with OpenCV
3.3 include:

● GoogleLeNet (used in this blog post)
● AlexNet
● SqueezeNet
● VGGNet (and associated flavors)
● ResNet

4. IMPLEMENTATION

Let’s now understand how our algorithm works step by
step.

Step 1 – Take Image as Input from a Camera With a
webcam.
 We will take images as input. So, to access the webcam,
we made an infinite loop that will capture each frame. We
use the method provided by OpenCV, cv2.VideoCapture
(0) to access the camera and set the capture object (cap).
cap.read () will read each frame and we store the image in
a frame variable.
Step 2 – Detect the face in the image and recognize the
face.
To detect the face in the image, we need to first convert
the image into grayscale as the OpenCV algorithm for
object detection takes gray images in the input. We don’t
need color information to detect the objects. We will be
using haar cascade classifier to detect faces. This line is
used to set our classifier face = cv2.CascadeClassifier
(‘path to our haar cascade xml file’). Then we perform the
detection using faces = face.detectMultiScale (gray). It
returns an array of detections with x, y coordinates, and
height, the width of the boundary box of the object. Now
we can iterate over the faces and draw boundary boxes for
each face.

Gray=cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
rects=det.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=5, flags=cv2.CASCADE_SCALE_IMAGE)

Match = face_recognition.compare_faces(encode_list, face,
0.5)
dist = face_recognition.face_distance(encode_list, face)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 496

matin = numpy.argmin(dist)

Step 3 – Detect the eyes from landmarks.
The facial landmark detector implemented inside dlib
produces 68 (x, y)-coordinates that map to specific facial
structures. These 68 point mappings were obtained by
training a shape predictor on the labeled iBUG 300-W
dataset.

Def find_eye(shape):
 (lstart,
lend)=face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rstart,
rend)=face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
lefteye=shape[lstart: lend]
righteye=shape[rstart:rend]

Fig 2:-facial points marked using facial landmark

Step 4 – Find EAR of both eyes.
leftEAR=eye_aspect_ratio(lefteye)
right_EAR=eye_aspect_ratio(righteye)
ear=(leftEAR+right_EAR)/2

Step 5 – Check EAR to check whether the person is
drowsy
We have obtained the facial landmarks based on Dlib
toolkit. As shown in Figure 6, for each eye, there are six
points distributed around to locate the position of eye. The
distribution of eyes landmarks has significant differences
between open and closed state. In Eye Aspect Ratio was
application to record the blink frequency. EAR can be
computed according to the position of eyes landmarks by:
EAR = kP2 − P6k + kP3 − P5k 2 kP1 − P4k where Pi, i = 1,
2, . . . , 6 is the coordinate of eyes landmarks. When the
eyes of driver are open, the EAR is over 0.2. In contrast,
the EAR is less than 0.2.

def eye_aspect_ratio(eye):
A=distance.euclidean(eye[1],eye[5])

B=distance.euclidean(eye[2],eye[4])
C=distance.euclidean(eye[0],eye[3])
ear=(A+B)/(2.0*C)
return ear

5. Results

Let’s start our project and see the working of our project.
To start the project, you need to open a command prompt,
go to the directory where our main file “GUI_DD.py” exists.
Run the script with this command.

Fig 3:-Main View (find the user is drowsing and if

drowsing then play the alarm)

Fig:-4 Display a bar chart

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 12 | Dec 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 497

Fig 5 :- line chart for EAR for each user

6. CONCLUSIONS

 In this Python project, we have built a drowsy driver alert
system that you can implement in numerous ways. I have
used OpenCV to detect faces and eyes using a haarcascade
classifier and then we used an EAR technique to predict
the status.
It is so accurate, it detect the drowsiness on run time and
report are also very accurate. It will very helpful to
prevent the car accidents.

REFERENCES

[1] Facial landmarks with dlib, OpenCV, and Python by

Adrian Rosebrock on
https://www.pyimagesearch.com/ in 2017

[2] Real Time Driver Drowsiness Detection Based on
Driver’s Face Image Behavior Using a System of
Human Computer Interaction Implemented in a
Smartphone on https://www.researchgate.net/ in
2018

BIOGRAPHIES

NAME: - Rushikesh R. Kamble
CLASS: - TE CSE
Occupation: - Student
COLLEGE: - Sinhgad Institute of
Technology and Science (SITS).

https://www.pyimagesearch.com/
https://www.researchgate.net/

